Upstream / Downstream

pathwayImage

Explore pathways related to this product.

Antibody Guarantee

CST Antibody Performance Guarantee

LEARN MORE  

To get local purchase information on this product, click here

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

Figure 1. Target map of the PathScan® Stress and Apoptosis Signaling Antibody Array Kit (Chemiluminescent Readout) #12856.

Learn more about how we get our images

Figure 2. HT-29 cells were grown to 80% confluency and then either untreated (left panel) or UV-irradiated and allowed to recover for 60 minutes (right panel). Cell extracts were prepared and analyzed using the PathScan® Stress and Apoptosis Signaling Antibody Array Kit (Chemiluminescent Readout) #12856. Images were acquired by briefly exposing the slide to standard chemiluminescent film.

Learn more about how we get our images

Figure 3. HeLa cells were grown to 90% confluency and then either untreated (left panel) or treated with Human Tumor Necrosis Factor-α (hTNF-α) #8902 (100 ng/ml, 20 min; right panel). Cell extracts were prepared and analyzed using the PathScan® Stress and Apoptosis Signaling Antibody Array Kit (Chemiluminescent Readout) #12856. Images were acquired by briefly exposing the slide to standard chemiluminescent film.

Learn more about how we get our images

Figure 4. HeLa cells were grown to 90% confluency and then serum starved overnight. Cells were either untreated (left panel) or treated with Human Transforming Growth Factor β3 (hTGF-β3) #8425 (100 ng/ml, 20 min; right panel). Cell extracts were prepared and analyzed using the PathScan® Stress and Apoptosis Signaling Antibody Array Kit (Chemiluminescent Readout) #12856. Images were acquired by briefly exposing the slide to standard chemiluminescent film.

Learn more about how we get our images

Figure 5. HeLa cells were grown to 90% confluency and then either untreated (left panel) or treated with Staurosporine #9953 (1 μM, 3.5 hr; right panel). Cell extracts were prepared and analyzed using the PathScan® Stress and Apoptosis Signaling Antibody Array Kit (Chemiluminescent Readout) #12856. Images were acquired by briefly exposing the slide to standard chemiluminescent film.

Learn more about how we get our images
Image
Page

PathScan® Stress and Apoptosis Signaling Antibody Array Kit (Chemiluminescent Readout) Protocol

A. Preparing Cell Lysates

  1. Thaw 1X Cell Lysis Buffer #7018 and mix thoroughly. Supplement 1X Cell Lysis Buffer with a Protease Inhibitor Cocktail (100X) #5871. Keep lysis buffer on ice.
  2. Remove media and wash cells once with ice-cold 1X PBS.
  3. Remove PBS and add ice-cold 1X Cell Lysis Buffer. For adherent cells, use 0.5 ml 1X Cell Lysis Buffer #7018 for each plate (10 cm in diameter). Incubate on ice for 2 minutes.
  4. Transfer lysates to a microcentrifuge tube and microcentrifuge at maximum speed for 2 minutes at 4°C.
  5. Transfer the supernatant to a new tube. The supernatant is the cell lysate and may be used immediately or stored at –80°C in single-use aliquots.
  6. Dilute lysates to 0.2 – 1.0 mg/ml in Array Diluent Buffer immediately before performing the assay. Set aside on ice.

B. Assay Procedure

  1. Bring glass slides and blocking buffer to room temperature before use.
  2. Prepare 1X Array Wash Buffer by diluting 20X Array Wash Buffer in deionized water. Dilute 1 ml of 20X Array Wash Buffer with 19 ml of deionized water. Label as 1X Array Wash Buffer. Keep at room temperature.
  3. Prepare 1X Detection Antibody Cocktail as follows:

    For running only 1 slide: Dilute 150 µl of 10X Detection Antibody Cocktail with 1350 µl of Array Diluent Buffer.

    For running 2 slides: Dilute 300 µl of 10X Detection Antibody Cocktail with 2700 µl of Array Diluent Buffer. Keep on ice.

  4. Prepare 1X HRP-linked Streptavidin by diluting 10X HRP-linked Streptavidin in Array Diluent Buffer. Keep on ice.
  5. Affix the multi-well gasket to the glass slide (see figure at bottom):
    1. Place the multi-well gasket facedown on the bench top (the silicone layer should be facing up). Remove the protective plastic film.
    2. Carefully place the glass slide on top of the multi-well gasket with the nitrocellulose pads facing down while aligning the pads with the openings in the gasket. The orientation line should appear in the upper left hand corner when the slide is oriented vertically.
    3. Insert the metal clip into the groove in the gasket and rotate the clip into the locked position. Ensure that the clip is on the same side as the orientation line on the slide.

      NOTE: one of the clips has a small dot etched onto the upper rib to assist with pad designation (see slide assembly photos).

    4. Slide the clip into place.
    5. Snap the unmarked metal clip to the other side of the assembly in the same manner and slide into place.
    6. The assembled array is ready to use.
  6. Add 100 µl Array Blocking Buffer to each well and cover with sealing tape. Incubate for 15 minutes at room temperature on an orbital shaker.

    NOTE: Do not allow the pads to dry out at any time during the assay.

  7. Decant Array Blocking Buffer by gently flicking out the liquid into a sink or other appropriate waste receptacle. Add 50 – 75 µl diluted lysate to each well and cover with sealing tape. Incubate for 2 hours at room temperature (or overnight at 4°C) on an orbital shaker.
  8. Decant well contents by gently flicking out the liquid into a sink or other appropriate waste receptacle. Add 100 µl 1X Array Wash Buffer to each well and incubate for 5 minutes at room temperature on an orbital shaker. Repeat three more times. Decant well contents.
  9. Add 75 µl 1X Detection Antibody Cocktail to each well and cover with sealing tape. Incubate for 1 hour at room temperature on an orbital shaker.
  10. Wash 4 – 5 minutes with 100 µl 1X Array Wash Buffer as in step 8.
  11. Add 75 µl 1X HRP-linked Streptavidin to each well and cover with sealing tape. Incubate for 30 minutes at room temperature on an orbital shaker.
  12. Wash 4 – 5 minutes with 100 µl 1X Array Wash Buffer as in step 8.
  13. Remove multi-well gasket by pulling the bottom of the metal clips away from the center of the slide, then peeling the slide and gasket apart.
  14. Place the slide face up in a plastic dish (a clean pipette tip box cover works well). Wash briefly with 10 ml 1X Array Wash Buffer.
  15. Dilute and combine LumiGLO® and Peroxide reagents immediately before use (to make 10 ml of a 1X solution, combine 9 ml deionized water with 0.5 ml of 20X LumiGLO® and 0.5 ml of 20X Peroxide).

    Note for Kodak® Biomax® film users: This dilution of LumiGLO®/Peroxide may necessitate very short exposure times (2-3 seconds) for some targets. For more convenient exposure times (20‑30 seconds) add 20 ml of deionized water to the 10 ml LumiGLO®/Peroxide mix to make a 3 fold more diluted chemiluminescent reagent.

  16. Decant Array Wash Buffer and cover slide with LumiGLO®/Peroxide reagent.
  17. Transfer slide to sheet protector, ensuring that it is still covered by LumiGLO®/Peroxide reagent (add a small amount on top of the slide).
  18. Immediately capture an image of the slide using a digital imaging system capable of detecting chemiluminescent signals. If desired, quantify spot intensities using commercially available array image analysis software. Alternatively, chemiluminescent film may be used. Expose film for 2 – 30 seconds using even and light pressure on the top of the development cassette (do not fasten the cassette clamps) to avoid squeezing out the LumiGLO®/ Peroxide reagent. Develop the film using an automated film developer.

    NOTE: If both slides are being used, it is not recommended to expose them simultaneously in the same development cassette. In this case, leave the second slide in the wash buffer (step 12) while proceeding with steps 13 – 18 using the first slide. After the first slide is finished, proceed with steps 13 – 18 using the second slide and freshly diluted LumiGLO®/Peroxide reagent.

Slide Assembly Photos

LumiGLO® is a registered trademark of Kirkegaard and Perry Laboratories.

Kodak® and BioMax® are trademarks of Eastman Kodak Company.

posted November 2013

protocol id: 52

Product Includes Quantity Cap Color
Array Slides - Stress and Apoptosis Array 2 Ea
16-Well Gasket 2 Ea
Sealing Tape 2 sheets
Chemiluminescent Development Folder
20X Array Wash Buffer 15 ml White
Array Blocking Buffer 5 ml Red
Array Diluent Buffer 15 ml Blue
Detection Ab Cocktail 10X - Stress and Apoptosis Array 300 µl White
HRP-Linked Streptavidin (10X) 300 µl Clear
20X LumiGLO® Reagent and 20X Peroxide 7003 5 ml each Brown
PathScan® Sandwich ELISA Lysis Buffer (1X) 7018 30 ml Clear

Product Usage Information

Storage: Kit should be stored at 4°C with the exception of Lysis Buffer, which is stored at –20°C (packaged separately).

Product Description

The PathScan® Stress and Apoptosis Signaling Antibody Array Kit (Chemiluminescent Readout) uses glass slides as the planar surface and is based upon the sandwich immunoassay principle. The array kit allows for the simultaneous detection of 19 signaling molecules that are involved in the regulation of the stress response and apoptosis. Target-specific capture antibodies have been spotted in duplicate onto nitrocellulose-coated glass slides. Each kit contains two slides allowing for the interrogation of 32 different samples and the generation of 608 data points in a single experiment. Cell lysates are incubated on the slide followed by a biotinylated detection antibody cocktail. Streptavidin-conjugated HRP and LumiGLO® Reagent are then used to visualize the bound detection antibody by chemiluminescence. An image of the slide can be captured with either a digital imaging system or standard chemiluminescent film. The image can be analyzed visually or the spot intensities quantified using array analysis software.


Specificity / Sensitivity

PathScan® Stress and Apoptosis Signaling Antibody Array Kit (Chemiluminescent Readout) detects the target proteins as specified on the Array Target Map. No substantial cross-reactivity has been observed between targets. This kit is optimized for cell lysates diluted to a total protein concentration between 0.2 and 1 mg/ml (see kit protocol).


Species Reactivity: Human

Cell death can occur due to a variety of circumstances including nutrient deprivation, inability to generate or store the energy required for metabolic functions, or deleterious environment that causes irreparable damage. Cells integrate multiple signals from a variety of sources before following either pro- or anti-apoptotic pathways. These signals can often carry conflicting information. Assessing the net effect of these processes in cell populations can be achieved by monitoring changes in a number of key signaling components. The caspase-3 and caspase-7 proteases exert a pro-apoptotic function through cleavage of multiple cellular targets. Caspase-3 and caspase-7 are activated by cleavage at Asp175 and Asp198, respectively. PARP is a DNA repair and apoptosis enzyme that is inactivated by cleavage at Asp214 by caspase-3 or caspase-7. HSP27 is a mediator of cell stress that confers resistance to adverse environmental conditions. HSP27 is activated by phosphorylation at Ser82. Chk1 and Chk2 kinases act downstream of ATM/ATR and play an important role in DNA damage checkpoint control. Activation of Chk1 and Chk2 involve phosphorylation at Ser345 and Thr68, respectively. Tumor suppressor p53 plays an important role in cellular response to DNA damage. p53 is phosphorylated at Ser15 by ATM/ATR or DNA-PK leading to its accumulation. Smad2 is a key mediator of TGF-β signaling. Stimulation by TGF-β leads to Smad2 phosphorylation at Ser465/467 and translocation of Smad2 into the nucleus. The outcome of TGF-β signaling is context dependent and can either induce apoptosis or contribute to tumor cell metastasis. Activation of NF-κB/Rel occurs through a proteasome-mediated degradation of IκBα. The inhibitor IκBα is targeted to the proteasome via phosphorylation of IκBα at Ser32 and Ser36. NF-κB activation is triggered by a diverse group of extracellular signals promoted by inflammatory cytokines, growth factors, and chemokines. TAK1 is a kinase that can be activated by TGF-β, bone morphogenetic proteins and other cytokines. Activated TAK1 phosphorylates MKK4, MKK3/6, and NIK. Phosphorylation of TAK1 at Ser412 is one of the mechanisms that regulate the levels of its activation. Cellular stress such as viral infection, endoplasmic reticulum stress, and amino acid deprivation leads to phosphorylation of eIF2α. Phosphorylation of eIF2α at Ser51 in response to cellular stress leads to a reduction of protein synthesis. The ERK1 and ERK2 MAP kinases are major signaling nodes that have many substrates and primarily transmit growth and proliferation signals. The ERK MAP kinase is activated by a dual phosphorylation of Thr202 and Tyr204. p38 MAPK and SAPK/JNK MAP kinases are activated through a similar dual phosphorylation mechanism in response to pro-inflammatory cytokines and genotoxic stress. Akt is activated by stimulation of growth-factor receptors and primarily promotes anabolic growth and survival signals via targeting its broad array of substrates. Akt phosphorylates Bad at Ser136 and inhibits its ability to induce apoptosis. Survivin is an anti-apoptotic protein that is highly expressed during fetal development and cancer cell malignancy. Survivin binds and inhibits caspase-3, controlling the cell cycle by inhibiting apoptosis and promoting cell division. α-tubulin is a building block of microtubules that are present in all eukaryotic cells. The levels of the globular α-tubulin are considered to remain relatively constant. Therefore, assessing the relative levels of α-tubulin may assist with signal normalization between the various samples.


1.  Cohen, G.M. (1997) Biochem J 326 ( Pt 1), 1-16.

2.  Bratton, S.B. and Cohen, G.M. (2001) Trends Pharmacol Sci 22, 306-15.

3.  Green, D.R. and Reed, J.C. (1998) Science 281, 1309-12.

4.  Basu, S. and Kolesnick, R. (1998) Oncogene 17, 3277-85.

5.  Jeremias, I. and Debatin, K.M. (1998) Eur Cytokine Netw 9, 687-8.

6.  Aravind, L. et al. (1999) Trends Biochem Sci 24, 47-53.

7.  Bates, S. and Vousden, K.H. (1999) Cell Mol Life Sci 55, 28-37.

8.  Heyninck, K. and Beyaert, R. (2001) Mol Cell Biol Res Commun 4, 259-65.

9.  Abe, K. et al. (2000) Ann N Y Acad Sci 926, 52-63.

10.  Rath, P.C. and Aggarwal, B.B. (1999) J Clin Immunol 19, 350-64.

11.  Holoch, P.A. and Griffith, T.S. (2009) Eur J Pharmacol 625, 63-72.

12.  Boatright, K.M. and Salvesen, G.S. (2003) Curr Opin Cell Biol 15, 725-31.

13.  Gjertsen, B.T. and Døskeland, S.O. (1995) Biochim Biophys Acta 1269, 187-99.

14.  Clemens, M.J. (2001) Prog Mol Subcell Biol 27, 57-89.

15.  Janes, K.A. et al. (2005) Science 310, 1646-53.

16.  Janes, K.A. et al. (2008) Cell 135, 343-54.


Entrez-Gene Id 207 , 208 , 10000 , 572 , 836 , 840 , 1111 , 11200 , 1965 , 5595 , 5594 , 3315 , 4792 , 142 , 1432 , 5600 , 5603 , 6300 , 7157 , 5599 , 4087 , 332 , 6885 , 10376

Protein Specific References

Germack R and Dickenson JM (2000) Br J Pharmacol 130, 867–74

Wick MJ et al. (2000) J Biol Chem 275, 40400–6

Rane MJ et al. (2001) J Biol Chem 276, 3517–23

Guizzetti M and Costa LG (2001) Neuroreport 12, 1639–42

Brognard J et al. (2001) Cancer Res 61, 3986–97

Maira SM et al. (2001) Science 294, 374–80

Schönherr E et al. (2001) J Biol Chem 276, 40687–92

Hill MM et al. (2001) J Biol Chem 276, 25643–6

Dhawan P et al. (2002) Cancer Res 62, 7335–42

Conus NM et al. (2002) J Biol Chem 277, 38021–8

Sano H et al. (2002) J Biol Chem 277, 19439–47

Egawa K et al. (2002) J Biol Chem 277, 38863–9

Kisseleva MV et al. (2002) J Biol Chem 277, 6266–72

Barry FA and Gibbins JM (2002) J Biol Chem 277, 12874–8

Ikonomov OC et al. (2002) Endocrinology 143, 4742–54

Rani MR et al. (2002) J Biol Chem 277, 38456–61

Ho R et al. (2002) Cancer Res 62, 6462–6

Wan X and Helman LJ (2003) Oncogene 22, 8205–11

Fukuda T et al. (2003) J Biol Chem 278, 51324–33

Kim HH et al. (2003) FASEB J 17, 2163–5

Min YH et al. (2004) Cancer Res 64, 5225–31

Tazzari PL et al. (2004) Br J Haematol 126, 675–81

Matsuzaki H et al. (2004) Biochemistry 43, 4284–93

Wolfrum S et al. (2004) Arterioscler Thromb Vasc Biol 24, 1842–7

Kaneko Y et al. (2004) J Cell Sci 117, 407–15

Esfandiarei M et al. (2004) J Virol 78, 4289–98

Baudhuin LM et al. (2004) FASEB J 18, 341–3

Dietze EC et al. (2004) Oncogene 23, 3851–62

Wu T et al. (2004) Mol Cancer Ther 3, 299–307

Honjo S et al. (2005) DNA Cell Biol 24, 141–7

Karlsson HK et al. (2005) Diabetes 54, 1459–67

Viniegra JG et al. (2005) J Biol Chem 280, 4029–36

Le XF et al. (2005) J Biol Chem 280, 2092–104

Smith E and Frenkel B (2005) J Biol Chem 280, 2388–94

Edwards LA et al. (2005) Oncogene 24, 3596–605

Karlsson HK et al. (2005) Diabetes 54, 1692–7

Kippenberger S et al. (2005) J Biol Chem 280, 3060–7

Jung HS et al. (2005) Mol Endocrinol 19, 2748–59

Khundmiri SJ et al. (2006) Am J Physiol Cell Physiol 291, C1247–57

Hers I and (2007) Blood 110, 4243–52

Ananthanarayanan B et al. (2007) J Biol Chem 282, 36634–41

Zunder ER et al. (2008) Cancer Cell 14, 180–92

Grenegård M et al. (2008) J Biol Chem 283, 18493–504

Abubaker J et al. (2009) Mol Cancer 8, 51

Chen PL and Easton AS (2011) Curr Neurovasc Res 8, 14–24

Van Aller GS et al. (2011) Biochem Biophys Res Commun 406, 194–9

Uesugi A et al. (2011) Cancer Res 71, 5765–78

Ou YH et al. (2011) Mol Cell 41, 458–70

Wang S et al. (2012) PLoS One 7, e37427

Glidden EJ et al. (2012) J Biol Chem 287, 581–8

Shih MC et al. (2012) Oncogene 31, 2389–400

Misra UK and Pizzo SV (2012) J Cell Biochem 113, 1488–500

Germack R and Dickenson JM (2000) Br J Pharmacol 130, 867–74

Wick MJ et al. (2000) J Biol Chem 275, 40400–6

Rane MJ et al. (2001) J Biol Chem 276, 3517–23

Guizzetti M and Costa LG (2001) Neuroreport 12, 1639–42

Brognard J et al. (2001) Cancer Res 61, 3986–97

Maira SM et al. (2001) Science 294, 374–80

Schönherr E et al. (2001) J Biol Chem 276, 40687–92

Hill MM et al. (2001) J Biol Chem 276, 25643–6

Dhawan P et al. (2002) Cancer Res 62, 7335–42

Conus NM et al. (2002) J Biol Chem 277, 38021–8

Sano H et al. (2002) J Biol Chem 277, 19439–47

Egawa K et al. (2002) J Biol Chem 277, 38863–9

Kisseleva MV et al. (2002) J Biol Chem 277, 6266–72

Barry FA and Gibbins JM (2002) J Biol Chem 277, 12874–8

Ikonomov OC et al. (2002) Endocrinology 143, 4742–54

Rani MR et al. (2002) J Biol Chem 277, 38456–61

Ho R et al. (2002) Cancer Res 62, 6462–6

Wan X and Helman LJ (2003) Oncogene 22, 8205–11

Fukuda T et al. (2003) J Biol Chem 278, 51324–33

Kim HH et al. (2003) FASEB J 17, 2163–5

Min YH et al. (2004) Cancer Res 64, 5225–31

Tazzari PL et al. (2004) Br J Haematol 126, 675–81

Matsuzaki H et al. (2004) Biochemistry 43, 4284–93

Wolfrum S et al. (2004) Arterioscler Thromb Vasc Biol 24, 1842–7

Kaneko Y et al. (2004) J Cell Sci 117, 407–15

Esfandiarei M et al. (2004) J Virol 78, 4289–98

Baudhuin LM et al. (2004) FASEB J 18, 341–3

Dietze EC et al. (2004) Oncogene 23, 3851–62

Wu T et al. (2004) Mol Cancer Ther 3, 299–307

Honjo S et al. (2005) DNA Cell Biol 24, 141–7

Karlsson HK et al. (2005) Diabetes 54, 1459–67

Viniegra JG et al. (2005) J Biol Chem 280, 4029–36

Le XF et al. (2005) J Biol Chem 280, 2092–104

Smith E and Frenkel B (2005) J Biol Chem 280, 2388–94

Edwards LA et al. (2005) Oncogene 24, 3596–605

Karlsson HK et al. (2005) Diabetes 54, 1692–7

Kippenberger S et al. (2005) J Biol Chem 280, 3060–7

Jung HS et al. (2005) Mol Endocrinol 19, 2748–59

Khundmiri SJ et al. (2006) Am J Physiol Cell Physiol 291, C1247–57

Hers I and (2007) Blood 110, 4243–52

Ananthanarayanan B et al. (2007) J Biol Chem 282, 36634–41

Zunder ER et al. (2008) Cancer Cell 14, 180–92

Grenegård M et al. (2008) J Biol Chem 283, 18493–504

Abubaker J et al. (2009) Mol Cancer 8, 51

Chen PL and Easton AS (2011) Curr Neurovasc Res 8, 14–24

Van Aller GS et al. (2011) Biochem Biophys Res Commun 406, 194–9

Uesugi A et al. (2011) Cancer Res 71, 5765–78

Ou YH et al. (2011) Mol Cell 41, 458–70

Wang S et al. (2012) PLoS One 7, e37427

Glidden EJ et al. (2012) J Biol Chem 287, 581–8

Shih MC et al. (2012) Oncogene 31, 2389–400

Misra UK and Pizzo SV (2012) J Cell Biochem 113, 1488–500

Johnson AL et al. (2001) Biol Reprod 64, 1566–74

Zhang M and Riedel H (2009) J Cell Biochem 107, 65–75

Johnson AL et al. (2001) Biol Reprod 64, 1566–74

Zhang M and Riedel H (2009) J Cell Biochem 107, 65–75

Moon EY and Lerner A (2003) Blood 101, 4122–30

Rice PL et al. (2003) Cancer Res 63, 616–20

Zhang B et al. (2004) Mol Cell Biol 24, 6205–14

Hui L et al. (2005) J Biol Chem 280, 35829–35

Xu RH et al. (2005) Cancer Res 65, 613–21

Li YY et al. (2006) Cancer Res 66, 6741–7

Polzien L et al. (2009) J Biol Chem 284, 28004–20

Chen J et al. (2009) Oncogene 28, 2581–92

Ye DZ et al. (2011) PLoS One 6, e27637

Kumar JK et al. (2011) Int J Biochem Cell Biol 43, 594–603

Polzien L et al. (2011) J Biol Chem 286, 17934–44

Marchion DC et al. (2011) Clin Cancer Res 17, 6356–66

Xu D et al. (2011) Carcinogenesis 32, 488–95

Zhuang M et al. (2013) Mol Cell 49, 273–82

Zhuang M et al. (2013) Mol Cell 49, 273–82

Zhang YW et al. (2005) Mol Cell 19, 607–18

Singh B et al. (2007) J Surg Res 140, 220–6

Matsumoto M et al. (2007) J Cell Sci 120, 1104–12

Zhang YW et al. (2009) Mol Cell 35, 442–53

Xu N et al. (2011) Biochem Biophys Res Commun 413, 465–70

Ahn J and Prives C (2002) J Biol Chem 277, 48418–26

Xu X et al. (2002) Mol Cell Biol 22, 4419–32

Lou Z et al. (2003) Nature 421, 957–61

Tsvetkov L et al. (2003) J Biol Chem 278, 8468–75

Bartkova J et al. (2004) Oncogene 23, 8545–51

Yin MB et al. (2004) Mol Pharmacol 66, 153–60

Li J and Stern DF (2005) J Biol Chem 280, 12041–50

Buscemi G et al. (2006) Mol Cell Biol 26, 7832–45

Yoda A et al. (2006) J Biol Chem 281, 24847–62

Sodha N et al. (2006) Cancer Res 66, 8966–70

Kass EM et al. (2007) J Biol Chem 282, 30311–21

Oliva-Trastoy M et al. (2007) Oncogene 26, 1449–58

Gabant G et al. (2008) J Mol Biol 380, 489–503

Guo X et al. (2010) J Biol Chem 285, 33348–57

Ahn, J.Y. et al. (2000) Cancer Res. 60, 5934-5936.

Syme CA et al. (2005) J Biol Chem 280, 11281–8

Syme CA et al. (2005) J Biol Chem 280, 11281–8

Li Z et al. (2001) J Biol Chem 276, 42226–32

Li Z et al. (2001) J Biol Chem 276, 42226–32

Butt E et al. (2001) J Biol Chem 276, 7108–13

Benn SC et al. (2002) Neuron 36, 45–56

Rane MJ et al. (2003) J Biol Chem 278, 27828–35

Butt E et al. (2001) J Biol Chem 276, 7108–13

Benn SC et al. (2002) Neuron 36, 45–56

Rane MJ et al. (2003) J Biol Chem 278, 27828–35

Heilker R et al. (1999) Eur J Biochem 259, 253–61

Gil J et al. (2000) Oncogene 19, 1369–78

Mukhopadhyay A et al. (2000) J Biol Chem 275, 8549–55

Kim BY et al. (2002) Oncogene 21, 4490–7

Mukhopadhyay A et al. (2002) J Biol Chem 277, 30622–8

Courtois G et al. (2003) J Clin Invest 112, 1108–15

Nair A et al. (2003) Oncogene 22, 50–8

Kasperczyk H et al. (2005) Oncogene 24, 6945–56

Gloire G et al. (2006) Oncogene 25, 5485–94

Culver C et al. (2010) Mol Cell Biol 30, 4901–21

Heilker R et al. (1999) Eur J Biochem 259, 253–61

Gil J et al. (2000) Oncogene 19, 1369–78

Mukhopadhyay A et al. (2000) J Biol Chem 275, 8549–55

Kim BY et al. (2002) Oncogene 21, 4490–7

Mukhopadhyay A et al. (2002) J Biol Chem 277, 30622–8

Courtois G et al. (2003) J Clin Invest 112, 1108–15

Nair A et al. (2003) Oncogene 22, 50–8

Kasperczyk H et al. (2005) Oncogene 24, 6945–56

Gloire G et al. (2006) Oncogene 25, 5485–94

Culver C et al. (2010) Mol Cell Biol 30, 4901–21

Kauppinen TM et al. (2006) Proc Natl Acad Sci U S A 103, 7136–41

Relou IA et al. (2003) J Biol Chem 278, 32638–44

Pillai VB et al. (2011) Mol Cell Biol 31, 2349–63

Ando K et al. (2011) J Biol Chem 286, 7619–28

Relou IA et al. (2003) J Biol Chem 278, 32638–44

Pillai VB et al. (2011) Mol Cell Biol 31, 2349–63

Ando K et al. (2011) J Biol Chem 286, 7619–28

Buschmann T et al. (2000) Cancer Res 60, 896–900

Chehab NH et al. (2000) Genes Dev 14, 278–88

Persons DL et al. (2000) J Biol Chem 275, 35778–85

Vaziri H et al. (2001) Cell 107, 149–59

Minamoto T et al. (2001) Oncogene 20, 3341–7

Stewart ZA et al. (2001) Oncogene 20, 113–24

Bean LJ and Stark GR (2001) Oncogene 20, 1076–84

Xie S et al. (2001) J Biol Chem 276, 43305–12

Xie S et al. (2001) J Biol Chem 276, 36194–9

Kim SJ et al. (2002) J Biol Chem 277, 33501–8

Bulavin DV et al. (2002) Nat Genet 31, 210–5

Shono T et al. (2002) Cancer Res 62, 1069–76

Adamson AW et al. (2002) J Biol Chem 277, 38222–9

Hase H et al. (2002) J Biol Chem 277, 46950–8

Bischof O et al. (2002) EMBO J 21, 3358–69

Qin JZ et al. (2002) Oncogene 21, 2991–3002

Hofmann TG et al. (2002) Nat Cell Biol 4, 1–10

Chouinard N et al. (2002) Biochem J 365, 133–45

Shiseki M et al. (2003) Cancer Res 63, 2373–8

Chen K et al. (2003) J Biol Chem 278, 39527–33

Sengupta S et al. (2003) EMBO J 22, 1210–22

Urban G et al. (2003) J Biol Chem 278, 9747–53

Oguchi K et al. (2003) Blood 101, 3622–7

Hideshima T et al. (2003) Blood 101, 1530–4

Lindström MS and Wiman KG (2003) Oncogene 22, 4993–5005

Hofseth LJ et al. (2003) Proc Natl Acad Sci U S A 100, 143–8

Wang C and Chen J (2003) J Biol Chem 278, 2066–71

Matsuoka M et al. (2003) Environ Health Perspect 111, 509–12

Yanamadala S and Ljungman M (2003) Mol Cancer Res 1, 747–54

Möller A et al. (2003) Cancer Res 63, 4310–4

Goudelock DM et al. (2003) J Biol Chem 278, 29940–7

Louria-Hayon I et al. (2003) J Biol Chem 278, 33134–41

Tritarelli A et al. (2004) Mol Biol Cell 15, 3751–7

Mroz RM et al. (2004) Am J Respir Cell Mol Biol 30, 564–8

Rui Y et al. (2004) EMBO J 23, 4583–94

Li Y et al. (2004) Oncogene 23, 7355–65

Vaghefi H and Neet KE (2004) Oncogene 23, 8078–87

Nair VD et al. (2004) J Biol Chem 279, 27494–501

Takagi M et al. (2004) Blood 103, 283–90

Ito K et al. (2004) Cancer Res 64, 1071–8

Koutsodontis G and Kardassis D (2004) Oncogene 23, 9190–200

Jackson MW et al. (2004) Oncogene 23, 4477–87

Dohoney KM et al. (2004) Oncogene 23, 49–57

Thompson T et al. (2004) J Biol Chem 279, 53015–22

Yeh PY et al. (2004) Oncogene 23, 3580–8

Komiyama S et al. (2004) Biochem Biophys Res Commun 323, 816–22

Soubeyrand S et al. (2004) Eur J Biochem 271, 3776–84

Ou YH et al. (2005) Mol Biol Cell 16, 1684–95

Feki A et al. (2005) Oncogene 24, 3726–36

Li Z et al. (2005) J Biol Chem 280, 16843–50

Di Stefano V et al. (2005) Oncogene 24, 5431–42

Hershko T et al. (2005) Cell Death Differ 12, 377–83

Mayo LD et al. (2005) J Biol Chem 280, 25953–9

Wesierska-Gadek J et al. (2005) Mol Cancer Ther 4, 113–24

Wang L et al. (2005) Oncogene 24, 3020–7

Zhao Y et al. (2006) Mol Cell Biol 26, 2782–90

Gresko E et al. (2006) EMBO J 25, 1883–94

Ichwan SJ et al. (2006) Oncogene 25, 1216–24

Knights CD et al. (2006) J Cell Biol 173, 533–44

Moiseeva O et al. (2006) Mol Biol Cell 17, 1583–92

Zeng PY and Berger SL (2006) Cancer Res 66, 10701–8

Li AG et al. (2006) Mol Cell 23, 575–87

Yoshida K et al. (2006) J Biol Chem 281, 5734–40

Li DW et al. (2006) Oncogene 25, 3006–22

Fraser M et al. (2006) Oncogene 25, 2203–12

Paulsen MT et al. (2006) Mol Cancer 5, 25

Singh K et al. (2007) PLoS One 2, e660

Nag A et al. (2007) J Biol Chem 282, 8812–20

Li HH et al. (2007) EMBO J 26, 402–11

Li Q et al. (2007) Cancer Res 67, 66–74

Taira N et al. (2007) Mol Cell 25, 725–38

Lambrot R et al. (2007) J Clin Endocrinol Metab 92, 2632–9

Ivanov GS et al. (2007) Mol Cell Biol 27, 6756–69

Nakanishi M et al. (2007) J Biol Chem 282, 22993–3004

Liu Y et al. (2007) J Biol Chem 282, 2505–11

Derheimer FA et al. (2007) Proc Natl Acad Sci U S A 104, 12778–83

Lee JH et al. (2007) J Cell Sci 120, 2259–71

Mantovani F et al. (2007) Nat Struct Mol Biol 14, 912–20

Wang H et al. (2008) J Biol Chem 283, 2564–74

Sun L et al. (2008) J Exp Clin Cancer Res 27, 35

Chang PC and Li M (2008) J Virol 82, 278–90

Lin T et al. (2008) Toxicology 247, 145–53

Chen JJ et al. (2008) J Immunol 180, 8030–9

Shouse GP et al. (2008) Mol Cell Biol 28, 448–56

Kitagawa M et al. (2008) Mol Cell 29, 217–31

Habold C et al. (2008) J Cell Mol Med 12, 607–21

Zhu H et al. (2008) Int J Cancer 123, 2741–9

Yamaguchi H et al. (2009) J Biol Chem 284, 11171–83

Wang Z et al. (2009) Pharm Res 26, 1140–8

Bar JK et al. (2009) Int J Gynecol Cancer 19, 1322–8

Nishimura T et al. (2009) J Biol Chem 284, 36442–52

Puca R et al. (2009) Mol Cancer 8, 85

Yadavilli S et al. (2009) J Biochem Mol Toxicol 23, 373–86

Baxter EW and Milner J (2010) J Neurooncol 97, 373–82

Fraser JA et al. (2010) J Biol Chem 285, 37773–86

Fraser JA et al. (2010) J Biol Chem 285, 37762–72

Shang X et al. (2010) Oncogene 29, 4938–46

Chen X et al. (2010) J Biol Chem 285, 12823–30

Kawano T et al. (2010) Int J Oncol 37, 787–95

Moehlenbrink J et al. (2010) Cancer Lett 292, 119–24

Venerando A et al. (2010) Cell Mol Life Sci 67, 1105–18

Puca R et al. (2010) Free Radic Biol Med 48, 1338–46

Marchenko ND et al. (2010) Cell Death Differ 17, 255–67

Aranha MM et al. (2011) PLoS One 6, e21396

Muñoz-Fontela C et al. (2011) Cell Cycle 10, 3701–5

Wu L et al. (2011) J Biol Chem 286, 2236–44

Ozeki C et al. (2011) J Biol Chem 286, 18251–60

Mellert HS et al. (2011) J Biol Chem 286, 4264–70

Valbuena A et al. (2011) PLoS One 6, e17320

Xu S et al. (2011) J Cardiovasc Pharmacol 58, 263–71

Seo SK et al. (2011) J Thorac Oncol 6, 1313–9

Savelyeva I and Dobbelstein M (2011) Oncogene 30, 865–75

Wu ZZ et al. (2011) J Cell Physiol 226, 2415–28

Smeenk L et al. (2011) PLoS One 6, e17574

Grison A et al. (2011) Proc Natl Acad Sci U S A 108, 17979–84

Gully CP et al. (2012) Proc Natl Acad Sci U S A 109, E1513–22

Wang H et al. (2012) DNA Repair (Amst) 11, 146–56

Xu S et al. (2013) Cell Res 23, 423–35

Chan C et al. (2013) Mol Cell Biol 33, 485–97

Thakur BK et al. (2013) Int J Cancer 132, 766–74

Yang Y et al. (2013) J Biol Chem 288, 529–39

Chehab, N.H. et al. (1999) Proc Natl Acad Sci U S A 96, 13777-82.

Buschmann T et al. (2000) Cancer Res 60, 896–900

Chehab NH et al. (2000) Genes Dev 14, 278–88

Persons DL et al. (2000) J Biol Chem 275, 35778–85

Vaziri H et al. (2001) Cell 107, 149–59

Minamoto T et al. (2001) Oncogene 20, 3341–7

Stewart ZA et al. (2001) Oncogene 20, 113–24

Bean LJ and Stark GR (2001) Oncogene 20, 1076–84

Xie S et al. (2001) J Biol Chem 276, 43305–12

Xie S et al. (2001) J Biol Chem 276, 36194–9

Kim SJ et al. (2002) J Biol Chem 277, 33501–8

Bulavin DV et al. (2002) Nat Genet 31, 210–5

Shono T et al. (2002) Cancer Res 62, 1069–76

Adamson AW et al. (2002) J Biol Chem 277, 38222–9

Hase H et al. (2002) J Biol Chem 277, 46950–8

Bischof O et al. (2002) EMBO J 21, 3358–69

Qin JZ et al. (2002) Oncogene 21, 2991–3002

Hofmann TG et al. (2002) Nat Cell Biol 4, 1–10

Chouinard N et al. (2002) Biochem J 365, 133–45

Shiseki M et al. (2003) Cancer Res 63, 2373–8

Chen K et al. (2003) J Biol Chem 278, 39527–33

Sengupta S et al. (2003) EMBO J 22, 1210–22

Urban G et al. (2003) J Biol Chem 278, 9747–53

Oguchi K et al. (2003) Blood 101, 3622–7

Hideshima T et al. (2003) Blood 101, 1530–4

Lindström MS and Wiman KG (2003) Oncogene 22, 4993–5005

Hofseth LJ et al. (2003) Proc Natl Acad Sci U S A 100, 143–8

Wang C and Chen J (2003) J Biol Chem 278, 2066–71

Matsuoka M et al. (2003) Environ Health Perspect 111, 509–12

Yanamadala S and Ljungman M (2003) Mol Cancer Res 1, 747–54

Möller A et al. (2003) Cancer Res 63, 4310–4

Goudelock DM et al. (2003) J Biol Chem 278, 29940–7

Louria-Hayon I et al. (2003) J Biol Chem 278, 33134–41

Tritarelli A et al. (2004) Mol Biol Cell 15, 3751–7

Mroz RM et al. (2004) Am J Respir Cell Mol Biol 30, 564–8

Rui Y et al. (2004) EMBO J 23, 4583–94

Li Y et al. (2004) Oncogene 23, 7355–65

Vaghefi H and Neet KE (2004) Oncogene 23, 8078–87

Nair VD et al. (2004) J Biol Chem 279, 27494–501

Takagi M et al. (2004) Blood 103, 283–90

Ito K et al. (2004) Cancer Res 64, 1071–8

Koutsodontis G and Kardassis D (2004) Oncogene 23, 9190–200

Jackson MW et al. (2004) Oncogene 23, 4477–87

Dohoney KM et al. (2004) Oncogene 23, 49–57

Thompson T et al. (2004) J Biol Chem 279, 53015–22

Yeh PY et al. (2004) Oncogene 23, 3580–8

Komiyama S et al. (2004) Biochem Biophys Res Commun 323, 816–22

Soubeyrand S et al. (2004) Eur J Biochem 271, 3776–84

Ou YH et al. (2005) Mol Biol Cell 16, 1684–95

Feki A et al. (2005) Oncogene 24, 3726–36

Li Z et al. (2005) J Biol Chem 280, 16843–50

Di Stefano V et al. (2005) Oncogene 24, 5431–42

Hershko T et al. (2005) Cell Death Differ 12, 377–83

Mayo LD et al. (2005) J Biol Chem 280, 25953–9

Wesierska-Gadek J et al. (2005) Mol Cancer Ther 4, 113–24

Wang L et al. (2005) Oncogene 24, 3020–7

Zhao Y et al. (2006) Mol Cell Biol 26, 2782–90

Gresko E et al. (2006) EMBO J 25, 1883–94

Ichwan SJ et al. (2006) Oncogene 25, 1216–24

Knights CD et al. (2006) J Cell Biol 173, 533–44

Moiseeva O et al. (2006) Mol Biol Cell 17, 1583–92

Zeng PY and Berger SL (2006) Cancer Res 66, 10701–8

Li AG et al. (2006) Mol Cell 23, 575–87

Yoshida K et al. (2006) J Biol Chem 281, 5734–40

Li DW et al. (2006) Oncogene 25, 3006–22

Fraser M et al. (2006) Oncogene 25, 2203–12

Paulsen MT et al. (2006) Mol Cancer 5, 25

Singh K et al. (2007) PLoS One 2, e660

Nag A et al. (2007) J Biol Chem 282, 8812–20

Li HH et al. (2007) EMBO J 26, 402–11

Li Q et al. (2007) Cancer Res 67, 66–74

Taira N et al. (2007) Mol Cell 25, 725–38

Lambrot R et al. (2007) J Clin Endocrinol Metab 92, 2632–9

Ivanov GS et al. (2007) Mol Cell Biol 27, 6756–69

Nakanishi M et al. (2007) J Biol Chem 282, 22993–3004

Liu Y et al. (2007) J Biol Chem 282, 2505–11

Derheimer FA et al. (2007) Proc Natl Acad Sci U S A 104, 12778–83

Lee JH et al. (2007) J Cell Sci 120, 2259–71

Mantovani F et al. (2007) Nat Struct Mol Biol 14, 912–20

Wang H et al. (2008) J Biol Chem 283, 2564–74

Sun L et al. (2008) J Exp Clin Cancer Res 27, 35

Chang PC and Li M (2008) J Virol 82, 278–90

Lin T et al. (2008) Toxicology 247, 145–53

Chen JJ et al. (2008) J Immunol 180, 8030–9

Shouse GP et al. (2008) Mol Cell Biol 28, 448–56

Kitagawa M et al. (2008) Mol Cell 29, 217–31

Habold C et al. (2008) J Cell Mol Med 12, 607–21

Zhu H et al. (2008) Int J Cancer 123, 2741–9

Yamaguchi H et al. (2009) J Biol Chem 284, 11171–83

Wang Z et al. (2009) Pharm Res 26, 1140–8

Bar JK et al. (2009) Int J Gynecol Cancer 19, 1322–8

Nishimura T et al. (2009) J Biol Chem 284, 36442–52

Puca R et al. (2009) Mol Cancer 8, 85

Yadavilli S et al. (2009) J Biochem Mol Toxicol 23, 373–86

Baxter EW and Milner J (2010) J Neurooncol 97, 373–82

Fraser JA et al. (2010) J Biol Chem 285, 37773–86

Fraser JA et al. (2010) J Biol Chem 285, 37762–72

Shang X et al. (2010) Oncogene 29, 4938–46

Chen X et al. (2010) J Biol Chem 285, 12823–30

Kawano T et al. (2010) Int J Oncol 37, 787–95

Moehlenbrink J et al. (2010) Cancer Lett 292, 119–24

Venerando A et al. (2010) Cell Mol Life Sci 67, 1105–18

Puca R et al. (2010) Free Radic Biol Med 48, 1338–46

Marchenko ND et al. (2010) Cell Death Differ 17, 255–67

Aranha MM et al. (2011) PLoS One 6, e21396

Muñoz-Fontela C et al. (2011) Cell Cycle 10, 3701–5

Wu L et al. (2011) J Biol Chem 286, 2236–44

Ozeki C et al. (2011) J Biol Chem 286, 18251–60

Mellert HS et al. (2011) J Biol Chem 286, 4264–70

Valbuena A et al. (2011) PLoS One 6, e17320

Xu S et al. (2011) J Cardiovasc Pharmacol 58, 263–71

Seo SK et al. (2011) J Thorac Oncol 6, 1313–9

Savelyeva I and Dobbelstein M (2011) Oncogene 30, 865–75

Wu ZZ et al. (2011) J Cell Physiol 226, 2415–28

Smeenk L et al. (2011) PLoS One 6, e17574

Grison A et al. (2011) Proc Natl Acad Sci U S A 108, 17979–84

Gully CP et al. (2012) Proc Natl Acad Sci U S A 109, E1513–22

Wang H et al. (2012) DNA Repair (Amst) 11, 146–56

Xu S et al. (2013) Cell Res 23, 423–35

Chan C et al. (2013) Mol Cell Biol 33, 485–97

Thakur BK et al. (2013) Int J Cancer 132, 766–74

Yang Y et al. (2013) J Biol Chem 288, 529–39

Chehab, N.H. et al. (1999) Proc Natl Acad Sci U S A 96, 13777-82.

Loeys BL et al. (2005) Nat Genet 37, 275–81

Simonsson M et al. (2006) J Biol Chem 281, 39870–80

Tu AW and Luo K (2007) J Biol Chem 282, 21187–96

Li F et al. (2009) Eur J Pharmacol 616, 31–7

Loeys BL et al. (2005) Nat Genet 37, 275–81

Simonsson M et al. (2006) J Biol Chem 281, 39870–80

Tu AW and Luo K (2007) J Biol Chem 282, 21187–96

Li F et al. (2009) Eur J Pharmacol 616, 31–7

Song J et al. (2005) Immunity 22, 621–31

Muschol-Steinmetz C et al. (2013) PLoS One 8, e73337

Kajino T et al. (2006) J Biol Chem 281, 39891–6

Yu Y et al. (2008) J Biol Chem 283, 24497–505

Yamazaki K et al. (2009) Sci Signal 2, ra66

Fan Y et al. (2012) Cell Signal 24, 1381–9

Liang L et al. (2013) Cell Signal 25, 247–54

Kajino T et al. (2006) J Biol Chem 281, 39891–6

Yu Y et al. (2008) J Biol Chem 283, 24497–505

Yamazaki K et al. (2009) Sci Signal 2, ra66

Fan Y et al. (2012) Cell Signal 24, 1381–9

Liang L et al. (2013) Cell Signal 25, 247–54


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
PathScan is a trademark of Cell Signaling Technology, Inc.
LumiGLO is a registered trademark of Kirkegaard & Perry Laboratories.