Upstream / Downstream

Explore pathways related to this product.

Antibody Guarantee

CST Antibody Performance Guarantee

LEARN MORE  

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

REACTIVITY
H M R
Product Includes Volume Solution Color
P-c-Jun (S63) Rabbit Antibody Coated Microwells 96 tests
c-Jun Mouse Detection Antibody 11 ml Green
Anti-mouse IgG, HRP-linked Antibody 11 ml Red
TMB Substrate 7004 11 ml Colorless
STOP Solution 7002 11 ml Colorless
Sealing Tape 2 sheets
ELISA Wash Buffer (20X) 25 ml Colorless
ELISA Sample Diluent 25 ml Blue
Cell Lysis Buffer (10X) 9803 15 ml Yellowish

Order Details

Custom Ordering Details: When ordering five or more kits, please contact us for processing time and pricing at sales@cellsignal.com.
Page

ELISA Colormetric

NOTE: Refer to product-specific datasheets or product webpage for assay incubation temperature.

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 20X Phosphate Buffered Saline (PBS): (#9808) To prepare 1 L PBS: add 50 ml 10X PBS to 950 ml dH2O, mix.
  2. Bring all microwell strips to room temperature before use.
  3. Prepare 1X Wash Buffer by diluting 20X Wash Buffer (included in each PathScan® Sandwich ELISA Kit) in dH2O.
  4. 1X Cell Lysis Buffer: 10X Cell Lysis Buffer (#9803): To prepare 10 ml of 1X Cell Lysis Buffer, add 1 ml of 10X Cell Lysis Buffer to 9 ml of dH2O, mix. Buffer can be stored at 4°C for short-term use (1–2 weeks).

    Recommended: Add 1 mM phenylmethylsulfonyl fluoride (PMSF) (#8553) immediately before use.

    NOTE: Refer to product-specific datasheet or webpage for lysis buffer recommendation.

  5. TMB Substrate: (#7004).
  6. STOP Solution: (#7002).

B. Preparing Cell Lysates

For adherent cells

  1. Aspirate media when the culture reaches 80–90% confluence. Treat cells by adding fresh media containing regulator for desired time.
  2. Remove media and rinse cells once with ice-cold 1X PBS.
  3. Remove PBS and add 0.5 ml ice-cold 1X cell lysis buffer plus 1 mM PMSF to each plate (10 cm diameter) and incubate the plate on ice for 5 min.
  4. Scrape cells off the plate and transfer to an appropriate tube. Keep on ice.
  5. Sonicate lysates on ice.
  6. Microcentrifuge for 10 min (x14,000 rpm) at 4°C and transfer the supernatant to a new tube. The supernatant is the cell lysate. Store at -80°C in single-use aliquots.

For suspension cells

  1. Remove media by low speed centrifugation (~1,200 rpm) when the culture reaches 0.5–1.0 x 106 viable cells/ml. Treat cells by adding fresh media containing regulator for desired time.
  2. Collect cells by low speed centrifugation (~1,200 rpm) and wash once with 5–10 ml ice-cold 1X PBS.
  3. Cells harvested from 50 ml of growth media can be lysed in 2.0 ml of 1X cell lysis buffer plus 1 mM PMSF.
  4. Sonicate lysates on ice.
  5. Microcentrifuge for 10 min (x14,000 rpm) at 4°C and transfer the supernatant to a new tube. The supernatant is the cell lysate. Store at -80°C in single-use aliquots.

C. Test Procedure

  1. After the microwell strips have reached room temperature, break off the required number of microwells. Place the microwells in the strip holder. Unused microwells must be resealed in the storage bag and stored at 4°C immediately.
  2. Cell lysates can be undiluted or diluted with sample diluent (supplied in each PathScan® Sandwich ELISA Kit, blue color). Individual datasheets or product webpage for each kit provide information regarding an appropriate dilution factor for lysates and kit assay results.
  3. Add 100 µl of each undiluted or diluted cell lysate to the appropriate well. Seal with tape and press firmly onto top of microwells. Incubate the plate for 2 hr at 37°C. Alternatively, the plate can be incubated overnight at 4°C.
  4. Gently remove the tape and wash wells:
    1. Discard plate contents into a receptacle.
    2. Wash 4 times with 1X wash buffer, 200 µl each time per well.
    3. For each wash, strike plates on fresh paper towels hard enough to remove the residual solution in each well, but do not allow wells to completely dry at any time.
    4. Clean the underside of all wells with a lint-free tissue.
  5. Add 100 µl of detection antibody (green color) to each well. Seal with tape and incubate the plate at 37°C for 1 hr.
  6. Repeat wash procedure (Section C, Step 4).
  7. Add 100 µl of HRP-linked secondary antibody (red color) to each well. Seal with tape and incubate the plate for 30 min at 37°C.
  8. Repeat wash procedure (Section C, Step 4).
  9. Add 100 µl of TMB substrate to each well. Seal with tape and incubate the plate for 10 min at 37°C or 30 min at 25°C.
  10. Add 100 µl of STOP solution to each well. Shake gently for a few seconds.

    NOTE: Initial color of positive reaction is blue, which changes to yellow upon addition of STOP solution.

  11. Read results
    1. Visual Determination: Read within 30 min after adding STOP solution.
    2. Spectrophotometric Determination: Wipe underside of wells with a lint-free tissue. Read absorbance at 450 nm within 30 min after adding STOP solution.

posted June 2005

revised November 2013

protocol id: 21

Product Description

CST's PathScan® Phospho-c-Jun (Ser63) Sandwich ELISA Kit II is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of phospho-c-Jun (Ser63) protein. A phospho-c-Jun (Ser63)-specific rabbit mAb has been coated onto the microwells. After incubation with cell lysates, phospho-c-Jun (Ser63) protein is captured by the coated antibody. Following extensive washing, c-Jun Mouse mAb is added to detect the captured phospho-c-Jun protein. Anti-Mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of optical density for this developed color is proportional to the quantity of phospho-c-Jun (Ser63) protein.

Antibodies in kit are custom formulations specific to kit.


Specificity / Sensitivity

PathScan® Phospho-c-Jun (Ser63) Sandwich ELISA Kit II detects endogenous levels of Phospho-c-Jun (Ser63) protein. As shown in Figure 1, using this Sandwich ELISA Kit #7145, a significant induction of phospho-c-Jun (Ser63) in UV-treated 293 cells can be detected. However, the level of total c-Jun protein (phospho and non-phospho), detected by the Total c-Jun Sandwich ELISA Kit II #7150, remains unchanged. Both C6 and NIH/3T3 cells treated with UV light or anisomycin show similar results (data not shown).

This kit is more sensitive than kit #7260 (figure 2). This kit detects proteins from the indicated species, as determined through in-house testing, but may also detect homologous proteins from other species.


Species Reactivity: Human, Mouse, Rat

c-Jun is a member of the Jun family containing c-Jun, JunB, and JunD, and is a component of the transcription factor activator protein-1 (AP-1). AP-1 is composed of dimers of Fos, Jun, and ATF family members and binds to and activates transcription at TRE/AP-1 elements (reviewed in 1). Extracellular signals including growth factors, chemokines, and stress activate AP-1-dependent transcription. The transcriptional activity of c-Jun is regulated by phosphorylation at Ser63 and Ser73 through SAPK/JNK (reviewed in 2). Knock-out studies in mice have shown that c-Jun is essential for embryogenesis (3), and subsequent studies have demonstrated roles for c-Jun in various tissues and developmental processes including axon regeneration (4), liver regeneration (5), and T cell development (6). AP-1 regulated genes exert diverse biological functions including cell proliferation, differentiation, and apoptosis, as well as transformation, invasion and metastasis, depending on cell type and context (7-9). Other target genes regulate survival, as well as hypoxia and angiogenesis (8,10). Research studies have implicated c-Jun as a promising therapeutic target for cancer, vascular remodeling, acute inflammation, and rheumatoid arthritis (11,12).


1.  Jochum, W. et al. (2001) Oncogene 20, 2401-12.

2.  Davis, R.J. (2000) Cell 103, 239-52.

3.  Hilberg, F. et al. (1993) Nature 365, 179-81.

4.  Raivich, G. et al. (2004) Neuron 43, 57-67.

5.  Behrens, A. et al. (2002) EMBO J 21, 1782-90.

6.  Riera-Sans, L. and Behrens, A. (2007) J Immunol 178, 5690-700.

7.  Leppä, S. and Bohmann, D. (1999) Oncogene 18, 6158-62.

8.  Shaulian, E. and Karin, M. (2002) Nat Cell Biol 4, E131-6.

9.  Weiss, C. and Bohmann, D. (2004) Cell Cycle 3, 111-3.

10.  Karamouzis, M.V. et al. (2007) Mol Cancer Res 5, 109-20.

11.  Kim, S. and Iwao, H. (2003) J Pharmacol Sci 91, 177-81.

12.  Dass, C.R. and Choong, P.F. (2008) Pharmazie 63, 411-4.


Entrez-Gene Id 3725
Swiss-Prot Acc. P05412


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.
PathScan® is a trademark of Cell Signaling Technology, Inc.