Upstream / Downstream

Explore pathways related to this product.

Antibody Guarantee

CST Antibody Performance Guarantee

LEARN MORE  

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

REACTIVITY
H M Mk
Page

ELISA Antibody Pair

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 20X Phosphate Buffered Saline (PBS): (#9808) To prepare 1 L 1X PBS: add 50 ml 20X PBS to 950 ml dH2O, mix.
  2. Wash Buffer: 1X PBS/0.05% Tween® 20, (20X PBST #9809).
  3. Blocking Buffer: 1X PBS/0.05% Tween® 20, 1% BSA.
  4. 1X Cell Lysis Buffer: 10X Cell Lysis Buffer (#9803): To prepare 10 ml of 1X Cell Lysis Buffer, add 1 ml of 10X Cell Lysis Buffer to 9 ml of dH2O, mix. Buffer can be stored at 4°C for short-term use (1–2 weeks).

    Recommended: Add 1 mM phenylmethylsulfonyl fluoride (PMSF) (#8553) immediately before use.

  5. Bovine Serum Albumin (BSA): (#9998).
  6. TMB Substrate: (#7004).
  7. STOP Solution: (#7002)

    NOTE: Reagents should be made fresh daily.

B. Preparing Cell Lysates

For adherent cells

  1. Aspirate media when the culture reaches 80–90% confluence. Treat cells by adding fresh media containing regulator for desired time.
  2. Remove media and rinse cells once with ice-cold 1X PBS.
  3. Remove PBS and add 0.5 ml ice-cold 1X Cell Lysis Buffer plus 1 mM PMSF to each plate (10 cm diameter) and incubate the plate on ice for 5 min.
  4. Scrape cells off the plate and transfer to an appropriate tube. Keep on ice.
  5. Sonicate lysates on ice.
  6. Microcentrifuge for 10 min (x14,000 rpm) at 4°C and transfer the supernatant to a new tube. The supernatant is the cell lysate. Store at -80°C in single-use aliquots.

For suspension cells

  1. Remove media by low speed centrifugation (~1,200 rpm) when the culture reaches 0.5–1.0 x 106 viable cells/ml. Treat cells by adding fresh media containing regulator for desired time.
  2. Collect cells by low speed centrifugation (~1,200 rpm) and wash once with 5–10 ml ice-cold 1X PBS.
  3. Cells harvested from 50 ml of growth media can be lysed in 2.0 ml of 1X cell lysis buffer plus 1 mM PMSF.
  4. Sonicate lysates on ice.
  5. Microcentrifuge for 10 min (x14,000 rpm) at 4°C and transfer the supernatant to a new tube. The supernatant is the cell lysate. Store at -80°C in single-use aliquots.

C. Coating Procedure

  1. Rinse microplate with 200 µl of dH2O, discard liquid. Blot on paper towel to make sure wells are dry.
  2. Dilute capture antibody 1:100 in 1X PBS. For a single 96 well plate, add 100 µl of capture antibody stock to 9.9 ml 1X PBS. Mix well and add 100 µl/well. Cover plate and incubate overnight at 4°C (17–20 hr).
  3. After overnight coating, gently uncover plate and wash wells:
    1. Discard plate contents into a receptacle.
    2. Wash four times with wash buffer, 200 µl each time per well. For each wash, strike plates on fresh paper towels hard enough to remove the residual solution in each well, but do not allow wells to completely dry at any time.
    3. Clean the underside of all wells with a lint-free tissue.
  4. Block plates. Add 150 µl of blocking buffer/well, cover plate, and incubate at 37°C for 2 hr.
  5. After blocking, wash plate (Section C, Step 3). Plate is ready to use.

D. Test Procedure

  1. Lysates can be used undiluted or diluted in blocking buffer. 100 µl of lysate is added per well. Cover plate and incubate at 37°C for 2 hr.
  2. Wash plate (Section C, Step 3).
  3. Dilute detection antibody 1:100 in blocking buffer. For a single 96 well plate, add 100 µl of detection antibody Stock to 9.9 ml of blocking buffer. Mix well and add 100 µl/well. Cover plate and incubate at 37°C for 1 hr.
  4. Wash plate (Section C, Step 3).
  5. Secondary antibody, either streptavidin anti-mouse or anti-rabbit-HRP, is diluted 1:1000 in blocking buffer. For a single 96 well plate, add 10 µl of secondary antibody stock to 9.99 ml of blocking buffer. Mix well and add 100 µl/well. Cover and incubate at 37°C for 30 min.
  6. Wash plate (Section C, Step 3).
  7. Add 100 µl of TMB substrate per well. Cover and incubate at 37°C for 10 min.
  8. Add 100 µl of STOP solution per well. Shake gently for a few seconds.
  9. Read plate on a microplate reader at absorbance 450 nm.
    1. Visual Determination: Read within 30 min after adding STOP solution.
    2. Spectrophotometric Determination: Wipe underside of wells with a lint-free tissue. Read absorbance at 450 nm within 30 min after adding STOP solution.

posted January 2008

revised Sepetember 2013

protocol id: 20

Product Includes Volume Cap Color
Total Histone H3 Capture Ab (100X) 0.4 ml Pink
Acetylated-Lysine Detection Ab (100X) 0.4 ml Blue
Anti-mouse IgG, HRP-linked Antibody 0.04 ml Yellow

Product Description

CST's PathScan® Acetylated Histone H3 Sandwich ELISA Antibody Pair is being offered as an alternative to our PathScan® Acetylated Histone H3 Sandwich ELISA Kit #7232. Capture and Detection antibodies (100X stocks) and HRP-conjugated secondary antibody (1000X stock) are supplied. Sufficient reagents are provided for performing 4 x 96 well ELISAs. The Histone Capture Antibody is coated in PBS overnight in a 96 well microplate. After blocking, cell lysates are added, followed by an Acetylated-Lysine Detection Antibody and HRP-conjugated Anti-Mouse IgG antibody. HRP substrate, TMB, is added for color development. The magnitude of the absorbance at 450 nm is proportional to the quantity of Acetylated Histone H3 protein.

*Antibodies in this kit are custom formulations specific to the kit


Product Usage Information

Antibody pairs have been optimized using recommended buffers, reagents, plates and the included protocol. Solutions should be made fresh daily.


Storage: Capture and detection antibodies are stored at 4°C. HRP-linked secondary reagent is stored at -20°C.

Specificity / Sensitivity

For Antibody Pair specificity and sensitivity, please refer to the corresponding PathScan® Sandwich ELISA Kit. Note: This antibody pair detects proteins from the indicated species, as determined through in-house testing, but may also detect homologous proteins from other species.


Species Reactivity: Human, Mouse, Monkey

Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).


1.  Workman, J.L. and Kingston, R.E. (1998) Annu Rev Biochem 67, 545-79.

2.  Hansen, J.C. et al. (1998) Biochemistry 37, 17637-41.

3.  Strahl, B.D. and Allis, C.D. (2000) Nature 403, 41-5.

4.  Cheung, P. et al. (2000) Cell 103, 263-71.

5.  Bernstein, B.E. and Schreiber, S.L. (2002) Chem Biol 9, 1167-73.

6.  Jaskelioff, M. and Peterson, C.L. (2003) Nat Cell Biol 5, 395-9.

7.  Thorne, A.W. et al. (1990) Eur J Biochem 193, 701-13.

8.  Hendzel, M.J. et al. (1997) Chromosoma 106, 348-60.

9.  Goto, H. et al. (1999) J Biol Chem 274, 25543-9.

10.  Preuss, U. et al. (2003) Nucleic Acids Res 31, 878-85.

11.  Dai, J. et al. (2005) Genes Dev 19, 472-88.


Entrez-Gene Id 8350
Swiss-Prot Acc. P68431


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.
PathScan® is a trademark of Cell Signaling Technology, Inc.