Upstream / Downstream

Explore pathways related to this product.

Antibody Guarantee

CST Antibody Performance Guarantee

LEARN MORE  

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

We recommend the following alternatives

    H M R Mk
REACTIVITY SENSITIVITY MW (kDa) SOURCE
11 Rabbit

Product Usage Information

Storage: Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

Specificity / Sensitivity

Acetyl-Histone H4 (Lys16) Antibody recognizes endogenous levels of histone H4 protein only when acetylated at Lys16. This antibody does not cross-react with histone H4 acetylated at Lys5, 8, and 12.


Species predicted to react based on 100% sequence homology: Hamster, Xenopus, Zebrafish, Bovine, Dog

Source / Purification

Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding acetylated Lys16 of human histone H4 protein. Antibodies are purified by protein A and peptide affinity chromatography.

The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1,2). Histone acetylation occurs mainly on the amino-terminal tail domains of histones H2A (Lys5), H2B (Lys5, 12, 15, and 20), H3 (Lys9, 14, 18, 23, 27, 36 and 56), and H4 (Lys5, 8, 12, and 16) and is important for the regulation of histone deposition, transcriptional activation, DNA replication, recombination, and DNA repair (1-3). Hyper-acetylation of the histone tails neutralizes the positive charge of these domains and is believed to weaken histone-DNA and nucleosome-nucleosome interactions, thereby destabilizing chromatin structure and increasing the accessibility of DNA to various DNA-binding proteins (4,5). In addition, acetylation of specific lysine residues creates docking sites for a protein module called the bromodomain, which binds to acetylated lysine residues (6). Many transcription and chromatin regulatory proteins contain bromodomains and may be recruited to gene promoters, in part, through binding of acetylated histone tails. Histone acetylation is mediated by histone acetyltransferases (HATs), such as CBP/p300, GCN5L2, PCAF, and Tip60, which are recruited to genes by DNA-bound protein factors to facilitate transcriptional activation (3). Deacetylation, which is mediated by histone deacetylases (HDAC and sirtuin proteins), reverses the effects of acetylation and generally facilitates transcriptional repression (7,8).


1.  Peterson, C.L. and Laniel, M.A. (2004) Curr Biol 14, R546-51.

2.  Workman, J.L. and Kingston, R.E. (1998) Annu Rev Biochem 67, 545-79.

3.  Hansen, J.C. et al. (1998) Biochemistry 37, 17637-41.

4.  Roth, S.Y. et al. (2001) Annu Rev Biochem 70, 81-120.

5.  Jaskelioff, M. and Peterson, C.L. (2003) Nat Cell Biol 5, 395-9.

6.  Yang, X.J. (2004) Bioessays 26, 1076-87.

7.  Haberland, M. et al. (2009) Nat Rev Genet 10, 32-42.

8.  Haigis, M.C. and Sinclair, D.A. (2010) Annu Rev Pathol 5, 253-95.


Entrez-Gene Id 8359
Swiss-Prot Acc. P62805


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.