Upstream / Downstream

Explore pathways related to this product.

Antibody Guarantee

CST Antibody Performance Guarantee

LEARN MORE  

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

Product Includes Quantity Applications Reactivity MW(kDa) Isotype
Tri-Methyl-Histone H3 (Lys4) (C42D8) Rabbit mAb 9751 x 40 µl
H M R Mk Dm Sc 17 Rabbit IgG
Tri-Methyl-Histone H3 (Lys9) Antibody 9754 x 40 µl
H M R Mk 17 Rabbit 
Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb 9733 x 40 µl
H M R Mk 17 Rabbit IgG
Tri-Methyl-Histone H3 (Lys36) (D5A7) XP® Rabbit mAb 4909 x 40 µl
H M R Mk 17 Rabbit IgG
Tri-Methyl-Histone H3 (Lys79) Antibody 4260 x 40 µl
H M R Mk 17 Rabbit 
Histone H3 (D1H2) XP® Rabbit mAb 4499 x 40 µl
H M R Mk 17 Rabbit IgG
Anti-rabbit IgG, HRP-linked Antibody 7074 x 100 µl
All Goat 

Product Description

Tri-Methyl Histone H3 Antibody Sampler Kit offers an economical means to evaluate the tri-methylation of Histone H3 on multiple residues. The kit contains enough primary antibody to perform four western blot experiments per primary.


Specificity / Sensitivity

Each modification-state Histone H3 antibody detects endogenous levels of Histone H3 only when tri-methylated on the indicated lysine residue. These antibodies do not cross-react with mono-methylated or di-methylated histone H3, or tri-methylated histone H4 at Lys20. Tri-Methyl-Histone H3 (Lys79) Antibody may show slight cross-reactivity toward histone H3 when di-methylated at Lys79, but does not cross-react with histone H3 tri-methylated at Lys4, 9, 27, or 36, or histone H4 at Lys20. Histone H3 (D1H2) XP® Rabbit mAb detects endogenous levels of total histone H3 protein. This antibody does not cross-react with other histones.


Source / Purification

Monoclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to the amino terminus of histone H3 in which Lys4, Lys27, and Lys36 are tri-methylated, respectively. Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to the amino terminus of histone H3 in which Lys9 is tri-methylated, or to residues surrounding tri-methyl-Lys79. Polyclonal antibodies are purified by protein A and peptide affinity chromatography.

The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).


1.  Peterson, C.L. and Laniel, M.A. (2004) Curr Biol 14, R546-51.

2.  Kubicek, S. et al. (2006) Ernst Schering Res. Found Workshop, 1-27.

3.  Lin, W. and Dent, S.Y. (2006) Curr. Opin. Genet. Dev. 16, 137-142.

4.  Lee, D.Y. et al. (2005) Endocr. Rev. 26, 147-170.

5.  Daniel, J.A. et al. (2005) Cell Cycle 4, 919-926.

6.  Shi, X. et al. (2006) Nature 442, 96-99.

7.  Wysocka, J. et al. (2006) Nature 442, 86-90.

8.  Wysocka, J. et al. (2005) Cell 121, 859-872.

9.  Trojer, P. and Reinberg, D. (2006) Cell 125, 213-217.


Entrez-Gene Id 8350
Swiss-Prot Acc. P68431

Protein Specific References

Zhong S et al. (2001) J Biol Chem 276, 33213–9

Li F et al. (2002) EMBO Rep 3, 767–73

Li J et al. (2002) J Biol Chem 277, 49504–10

Sugiyama K et al. (2002) Oncogene 21, 3103–11

Martens JH et al. (2003) Mol Cell Biol 23, 1808–16

Espino PS et al. (2006) Cancer Res 66, 4610–6

Park JH et al. (2006) Cancer Res 66, 9186–95

Soncini C et al. (2006) Clin Cancer Res 12, 4080–9

Idikio HA and (2006) Anticancer Res 26, 4687–94

Wang GG et al. (2007) Nat Cell Biol 9, 804–12

Duan Q et al. (2008) J Biol Chem 283, 33585–90

Dawson MA et al. (2009) Nature 461, 819–22

Cheng MF et al. (2009) Histol Histopathol 24, 1105–11

Hurd PJ et al. (2009) J Biol Chem 284, 16575–83

McGinty RK et al. (2009) ACS Chem Biol 4, 958–68

Banck MS et al. (2009) Epigenetics 4, 100–6

Wu Y et al. (2010) BMC Cancer 10, 32

Pasini D et al. (2010) Nucleic Acids Res 38, 4958–69

Sakabe K and Hart GW (2010) J Biol Chem 285, 34460–8

Gehani SS et al. (2010) Mol Cell 39, 886–900

Jung HR et al. (2010) Mol Cell Proteomics 9, 838–50

Davies GF et al. (2010) Cancer Lett 288, 236–50

Aguilera C et al. (2011) Nature 469, 231–5

Huertas D et al. (2012) Oncogene 31, 1408–18

Joosten M et al. (2013) Haematologica 98, 247–54

Sayegh J et al. (2013) J Biol Chem 288, 9408–17

Dai, J. et al. (2005) Genes Dev 19, 472-88.

Zhong S et al. (2001) J Biol Chem 276, 33213–9

Li F et al. (2002) EMBO Rep 3, 767–73

Li J et al. (2002) J Biol Chem 277, 49504–10

Sugiyama K et al. (2002) Oncogene 21, 3103–11

Martens JH et al. (2003) Mol Cell Biol 23, 1808–16

Espino PS et al. (2006) Cancer Res 66, 4610–6

Park JH et al. (2006) Cancer Res 66, 9186–95

Soncini C et al. (2006) Clin Cancer Res 12, 4080–9

Idikio HA and (2006) Anticancer Res 26, 4687–94

Wang GG et al. (2007) Nat Cell Biol 9, 804–12

Duan Q et al. (2008) J Biol Chem 283, 33585–90

Dawson MA et al. (2009) Nature 461, 819–22

Cheng MF et al. (2009) Histol Histopathol 24, 1105–11

Hurd PJ et al. (2009) J Biol Chem 284, 16575–83

McGinty RK et al. (2009) ACS Chem Biol 4, 958–68

Banck MS et al. (2009) Epigenetics 4, 100–6

Wu Y et al. (2010) BMC Cancer 10, 32

Pasini D et al. (2010) Nucleic Acids Res 38, 4958–69

Sakabe K and Hart GW (2010) J Biol Chem 285, 34460–8

Gehani SS et al. (2010) Mol Cell 39, 886–900

Jung HR et al. (2010) Mol Cell Proteomics 9, 838–50

Davies GF et al. (2010) Cancer Lett 288, 236–50

Aguilera C et al. (2011) Nature 469, 231–5

Huertas D et al. (2012) Oncogene 31, 1408–18

Joosten M et al. (2013) Haematologica 98, 247–54

Sayegh J et al. (2013) J Biol Chem 288, 9408–17

Dai, J. et al. (2005) Genes Dev 19, 472-88.

Zhong S et al. (2001) J Biol Chem 276, 33213–9

Li F et al. (2002) EMBO Rep 3, 767–73

Li J et al. (2002) J Biol Chem 277, 49504–10

Sugiyama K et al. (2002) Oncogene 21, 3103–11

Martens JH et al. (2003) Mol Cell Biol 23, 1808–16

Espino PS et al. (2006) Cancer Res 66, 4610–6

Park JH et al. (2006) Cancer Res 66, 9186–95

Soncini C et al. (2006) Clin Cancer Res 12, 4080–9

Idikio HA and (2006) Anticancer Res 26, 4687–94

Wang GG et al. (2007) Nat Cell Biol 9, 804–12

Duan Q et al. (2008) J Biol Chem 283, 33585–90

Dawson MA et al. (2009) Nature 461, 819–22

Cheng MF et al. (2009) Histol Histopathol 24, 1105–11

Hurd PJ et al. (2009) J Biol Chem 284, 16575–83

McGinty RK et al. (2009) ACS Chem Biol 4, 958–68

Banck MS et al. (2009) Epigenetics 4, 100–6

Wu Y et al. (2010) BMC Cancer 10, 32

Pasini D et al. (2010) Nucleic Acids Res 38, 4958–69

Sakabe K and Hart GW (2010) J Biol Chem 285, 34460–8

Gehani SS et al. (2010) Mol Cell 39, 886–900

Jung HR et al. (2010) Mol Cell Proteomics 9, 838–50

Davies GF et al. (2010) Cancer Lett 288, 236–50

Aguilera C et al. (2011) Nature 469, 231–5

Huertas D et al. (2012) Oncogene 31, 1408–18

Joosten M et al. (2013) Haematologica 98, 247–54

Sayegh J et al. (2013) J Biol Chem 288, 9408–17

Dai, J. et al. (2005) Genes Dev 19, 472-88.

Zhong S et al. (2001) J Biol Chem 276, 33213–9

Li F et al. (2002) EMBO Rep 3, 767–73

Li J et al. (2002) J Biol Chem 277, 49504–10

Sugiyama K et al. (2002) Oncogene 21, 3103–11

Martens JH et al. (2003) Mol Cell Biol 23, 1808–16

Espino PS et al. (2006) Cancer Res 66, 4610–6

Park JH et al. (2006) Cancer Res 66, 9186–95

Soncini C et al. (2006) Clin Cancer Res 12, 4080–9

Idikio HA and (2006) Anticancer Res 26, 4687–94

Wang GG et al. (2007) Nat Cell Biol 9, 804–12

Duan Q et al. (2008) J Biol Chem 283, 33585–90

Dawson MA et al. (2009) Nature 461, 819–22

Cheng MF et al. (2009) Histol Histopathol 24, 1105–11

Hurd PJ et al. (2009) J Biol Chem 284, 16575–83

McGinty RK et al. (2009) ACS Chem Biol 4, 958–68

Banck MS et al. (2009) Epigenetics 4, 100–6

Wu Y et al. (2010) BMC Cancer 10, 32

Pasini D et al. (2010) Nucleic Acids Res 38, 4958–69

Sakabe K and Hart GW (2010) J Biol Chem 285, 34460–8

Gehani SS et al. (2010) Mol Cell 39, 886–900

Jung HR et al. (2010) Mol Cell Proteomics 9, 838–50

Davies GF et al. (2010) Cancer Lett 288, 236–50

Aguilera C et al. (2011) Nature 469, 231–5

Huertas D et al. (2012) Oncogene 31, 1408–18

Joosten M et al. (2013) Haematologica 98, 247–54

Sayegh J et al. (2013) J Biol Chem 288, 9408–17

Dai, J. et al. (2005) Genes Dev 19, 472-88.


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.
U.S. Patent No. 5,675,063.