Upstream / Downstream

Explore pathways related to this product.

Antibody Guarantee

CST Antibody Performance Guarantee

LEARN MORE  

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

Product Includes Quantity Applications Reactivity MW(kDa) Isotype
Phospho-EGF Receptor (Tyr1068) (D7A5) XP® Rabbit mAb 3777 x 40 µl
H M R Mk 175 Rabbit IgG
Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb 4060 x 40 µl
H M R Hm Mk Dm Z B 60 Rabbit IgG
Phospho-Gab1 (Tyr627) (C32H2) Rabbit mAb 3233 x 40 µl
H 110 Rabbit IgG
Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb 4370 x 40 µl
H M R Hm Mk Mi Dm Z B Dg Pg Sc 44, 42 Rabbit IgG
Phospho-PLCγ1 (Tyr783) Antibody 2821 x 40 µl
H M R 155 Rabbit 
Phospho-Shc (Tyr239/240) Antibody 2434 x 40 µl
H M R 50, 55, 70 Rabbit 
Phospho-Stat5 (Tyr694) (D47E7) XP® Rabbit mAb 4322 x 40 µl
H M 90 Rabbit IgG
Phospho-c-Cbl (Tyr700) (D16D7) Rabbit mAb 8869 x 40 µl
H 120 Rabbit IgG
Anti-rabbit IgG, HRP-linked Antibody 7074 x 100 µl
All Goat 

Product Description

The Phospho-EGF Receptor Pathway Sampler Kit provides an economical means to evaluate the activation status of multiple members of the EGF receptor pathway, including phosphorylated EGF receptor, Stat5, c-Cbl, Shc, Gab1, PLCγ1, Akt and p44/42 MAPK. The kit includes enough primary and secondary antibodies to perform four western blot experiments.


Specificity / Sensitivity

Each antibody in the Phospho-EGF Receptor Pathway Sampler Kit recognizes the phosphorylated form of its specific target. Phospho-EGF Receptor (Tyr1068) (D7A5) XP® Rabbit mAb may cross-react weakly with other tyrosine-phosphorylated proteins. Phospho-Gab1 (Tyr627) (C32H2) Rabbit mAb may cross-react with phosphorylated Gab2, Gab3, or activated receptor tyrosine kinases. Phospho-Shc (Tyr239/240) Antibody may cross-react with activated EGF receptor protein.


Source / Purification

Activation state polyclonal antibodies are produced by immunizing animals with synthetic phosphopeptides corresponding to residues surrounding Tyr239/240 of human Shc and Tyr783 of human PLCγ1. Polyclonal antibodies are purified by protein A and peptide affinity chromatography. Rabbit monoclonal antibodies are produced by immunizing animals with synthetic phosphopeptides corresponding to residues surrounding Tyr700 of c-Cbl, Tyr1068 of human EGF receptor, Tyr694 of Stat5a, Tyr627 of human Gab1, Ser473 of human Akt and Thr202/Tyr204 of human p44 MAP kinase.

The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).


1.  Zwick, E. et al. (1999) Trends Pharmacol Sci 20, 408-12.

2.  Hackel, P.O. et al. (1999) Curr Opin Cell Biol 11, 184-9.

3.  Cooper, J.A. and Howell, B. (1993) Cell 73, 1051-4.

4.  Hubbard, S.R. et al. (1994) Nature 372, 746-54.

5.  Biscardi, J.S. et al. (1999) J Biol Chem 274, 8335-43.

6.  Emlet, D.R. et al. (1997) J Biol Chem 272, 4079-86.

7.  Levkowitz, G. et al. (1999) Mol Cell 4, 1029-40.

8.  Ettenberg, S.A. et al. (1999) Oncogene 18, 1855-66.

9.  Rojas, M. et al. (1996) J Biol Chem 271, 27456-61.

10.  Feinmesser, R.L. et al. (1999) J Biol Chem 274, 16168-73.


Entrez-Gene Id 207, 208, 10000, 867, 1956, 5595, 5594, 2549, 5335, 6464, 6776, 6777
Swiss-Prot Acc. P31749, P31751, Q9Y243, P22681, P00533, P27361, P28482, Q13480, P19174, P29353, P42229, P51692

Protein Specific References

Germack R and Dickenson JM (2000) Br J Pharmacol 130, 867–74

Wick MJ et al. (2000) J Biol Chem 275, 40400–6

Rane MJ et al. (2001) J Biol Chem 276, 3517–23

Guizzetti M and Costa LG (2001) Neuroreport 12, 1639–42

Brognard J et al. (2001) Cancer Res 61, 3986–97

Maira SM et al. (2001) Science 294, 374–80

Schönherr E et al. (2001) J Biol Chem 276, 40687–92

Hill MM et al. (2001) J Biol Chem 276, 25643–6

Dhawan P et al. (2002) Cancer Res 62, 7335–42

Conus NM et al. (2002) J Biol Chem 277, 38021–8

Sano H et al. (2002) J Biol Chem 277, 19439–47

Egawa K et al. (2002) J Biol Chem 277, 38863–9

Kisseleva MV et al. (2002) J Biol Chem 277, 6266–72

Barry FA and Gibbins JM (2002) J Biol Chem 277, 12874–8

Ikonomov OC et al. (2002) Endocrinology 143, 4742–54

Rani MR et al. (2002) J Biol Chem 277, 38456–61

Ho R et al. (2002) Cancer Res 62, 6462–6

Wan X and Helman LJ (2003) Oncogene 22, 8205–11

Fukuda T et al. (2003) J Biol Chem 278, 51324–33

Kim HH et al. (2003) FASEB J 17, 2163–5

Min YH et al. (2004) Cancer Res 64, 5225–31

Tazzari PL et al. (2004) Br J Haematol 126, 675–81

Matsuzaki H et al. (2004) Biochemistry 43, 4284–93

Wolfrum S et al. (2004) Arterioscler Thromb Vasc Biol 24, 1842–7

Kaneko Y et al. (2004) J Cell Sci 117, 407–15

Esfandiarei M et al. (2004) J Virol 78, 4289–98

Baudhuin LM et al. (2004) FASEB J 18, 341–3

Dietze EC et al. (2004) Oncogene 23, 3851–62

Wu T et al. (2004) Mol Cancer Ther 3, 299–307

Honjo S et al. (2005) DNA Cell Biol 24, 141–7

Karlsson HK et al. (2005) Diabetes 54, 1459–67

Viniegra JG et al. (2005) J Biol Chem 280, 4029–36

Le XF et al. (2005) J Biol Chem 280, 2092–104

Smith E and Frenkel B (2005) J Biol Chem 280, 2388–94

Edwards LA et al. (2005) Oncogene 24, 3596–605

Karlsson HK et al. (2005) Diabetes 54, 1692–7

Kippenberger S et al. (2005) J Biol Chem 280, 3060–7

Jung HS et al. (2005) Mol Endocrinol 19, 2748–59

Khundmiri SJ et al. (2006) Am J Physiol Cell Physiol 291, C1247–57

Hers I and (2007) Blood 110, 4243–52

Ananthanarayanan B et al. (2007) J Biol Chem 282, 36634–41

Zunder ER et al. (2008) Cancer Cell 14, 180–92

Grenegård M et al. (2008) J Biol Chem 283, 18493–504

Abubaker J et al. (2009) Mol Cancer 8, 51

Chen PL and Easton AS (2011) Curr Neurovasc Res 8, 14–24

Van Aller GS et al. (2011) Biochem Biophys Res Commun 406, 194–9

Uesugi A et al. (2011) Cancer Res 71, 5765–78

Ou YH et al. (2011) Mol Cell 41, 458–70

Wang S et al. (2012) PLoS One 7, e37427

Glidden EJ et al. (2012) J Biol Chem 287, 581–8

Shih MC et al. (2012) Oncogene 31, 2389–400

Misra UK and Pizzo SV (2012) J Cell Biochem 113, 1488–500

Johnson AL et al. (2001) Biol Reprod 64, 1566–74

Zhang M and Riedel H (2009) J Cell Biochem 107, 65–75

Heimberger AB et al. (2002) Clin Cancer Res 8, 3496–502

Chen X and Resh MD (2002) J Biol Chem 277, 49631–7

Ravid T et al. (2002) J Biol Chem 277, 31214–9

Westover EJ et al. (2003) J Biol Chem 278, 51125–33

Agazie YM and Hayman MJ (2003) Mol Cell Biol 23, 7875–86

Saito T et al. (2004) Endocrinology 145, 4232–43

Pao W et al. (2004) Proc Natl Acad Sci U S A 101, 13306–11

Mattila E et al. (2005) Nat Cell Biol 7, 78–85

Tanos B and Pendergast AM (2006) J Biol Chem 281, 32714–23

Huang F et al. (2006) Mol Cell 21, 737–48

Wu SL et al. (2006) Mol Cell Proteomics 5, 1610–27

Kannangai R et al. (2006) Mod Pathol 19, 1456–61

Sonnweber B et al. (2006) J Clin Pathol 59, 255–9

Riggins RB et al. (2006) Cancer Res 66, 7007–15

Huang F et al. (2007) Proc Natl Acad Sci U S A 104, 16904–9

Tong J et al. (2009) Mol Cell Proteomics 8, 2131–44

Goh LK et al. (2010) J Cell Biol 189, 871–83

Hall EH et al. (2011) Cell Signal 23, 1972–7

Huang WC et al. (2011) J Biol Chem 286, 20558–68

Cotton CU et al. (2013) Traffic 14, 337–54

Syme CA et al. (2005) J Biol Chem 280, 11281–8

Li Z et al. (2001) J Biol Chem 276, 42226–32

Montagner A et al. (2005) J Biol Chem 280, 5350–60

Chan PC et al. (2010) Oncogene 29, 698–710

Ortiz-Padilla C et al. (2013) Oncogene 32, 2696–702

Ugi S et al. (2002) Mol Cell Biol 22, 2375–87

Patrussi L et al. (2005) Oncogene 24, 2218–28

Kasuno K et al. (2007) Cell Death Differ 14, 1414–21

Xiao D and Singh SV (2010) Cancer Res 70, 3150–8

Fox EM et al. (2008) Mol Endocrinol 22, 1781–96


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.
U.S. Patent No. 5,675,063.