Upstream / Downstream

pathwayImage

Explore pathways related to this product.

Antibody Guarantee

CST Antibody Performance Guarantee

LEARN MORE  

To get local purchase information on this product, click here

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

We recommend the following alternatives

W IP IHC IF F   H Mk
REACTIVITY SENSITIVITY MW (kDa) SOURCE
H M R Mk Endogenous Rabbit
Image
Image
Image
Image

Flow Cytometry

Flow cytometric analysis of HeLa cells using HSP70 (D69) Antibody (Alexa Fluor® 488 Conjugate) (green) compared to XP® Rabbit (DA1E) mAb IgG Isotype Control (Alexa Fluor® 488 Conjugate) #2975 (red).

Learn more about how we get our images
Image
Image
Page

Flow Cytometry General Protocol

If using whole blood, please follow the Flow Cytometry Whole Blood Protocol.

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 20X Phosphate Buffered Saline (PBS): (#9808) To prepare 1 L 1X PBS: add 50 ml 20X PBS to 950 ml dH2O, mix.
  2. 16% Formaldehyde (methanol free).
  3. 100% methanol.
  4. Incubation Buffer: Dissolve 0.5 g Bovine Serum Albumin (BSA) (#9998) in 100 ml 1X PBS. Store at 4°C.

B. Fixation

  1. Collect cells by centrifugation and aspirate supernatant.
  2. Resuspend cells in 0.5–1 ml 1X PBS. Add formaldehyde to obtain a final concentration of 4%.
  3. Fix for 10 min at 37°C.
  4. Chill tubes on ice for 1 min.
  5. For extracellular staining with antibodies that do not require permeabilization, proceed to immunostaining (Section D) or store cells in PBS with 0.1% sodium azide at 4°C; for intracellular staining, proceed to permeabilization (Section C).

C. Permeabilization

NOTE: This step is critical for many CST antibodies.

  1. Permeabilize cells by adding ice-cold 100% methanol slowly to pre-chilled cells, while gently vortexing, to a final concentration of 90% methanol. Alternatively, remove fix prior to permeabilization by centrifugation and resuspend in 90% methanol as described above.
  2. Incubate 30 min on ice.
  3. Proceed with immunostaining (Section D) or store cells at -20°C in 90% methanol.

D. Immunostaining

NOTE: Account for isotype matched controls for monoclonal antibodies or species matched IgG for polyclonal antibodies. Count cells using a hemocytometer or alternative method.

  1. Aliquot 0.5–1 x 106 cells into each assay tube (by volume).
  2. Add 2–3 ml incubation buffer to each tube and wash by centrifugation. Repeat.
  3. Resuspend cells in 100 µl of diluted primary antibody (prepared in incubation buffer at the recommended dilution).
  4. Incubate for 1 hr at room temperature.
  5. Wash by centrifugation in 2–3 ml incubation buffer.
  6. Resuspend cells in 0.5 ml PBS and analyze on flow cytometer; alternatively, for DNA staining, proceed to optional DNA stain (Section E).

E. Optional DNA Dye

  1. Resuspend cells in 0.5 ml of DNA dye (e.g. Propidium Iodide (PI)/RNase Staining Solution #4087).
  2. Incubate for at least 30 min at room temperature.
  3. Analyze cells in DNA staining solution on flow cytometer.

posted July 2009

revised September 2013

Flow Cytometry Whole Blood Protocol

If using cell lines, please follow the Flow Cytometry General Protocol.

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 20X Phosphate Buffered Saline (PBS): (#9808) To prepare 1 L 1X PBS: add 50 ml 20X PBS to 950 ml dH2O, mix.
  2. 16% Formaldehyde (methanol free).
  3. Triton™ X-100: To prepare 50 ml of 0.1% Triton™ X-100 add 50 μl Triton™ X-100 to 50 ml 1 X PBS and mix well.
  4. 50% methanol.
  5. Incubation Buffer: Dissolve 0.5 g Bovine Serum Albumin (BSA) (#9998) in 100 ml 1X PBS. Store at 4°C.

B. Preparation of Whole Blood (fixation, lysis, and permeabilization) for Immunostaining

  1. Aliquot 100 μl fresh whole blood per assay tube.
  2. OPTIONAL: Place tubes in rack in 37°C water bath for short-term treatments with ligands, inhibitors, drugs, etc.
  3. Add 65 μl of 10% formaldehyde to each tube.
  4. Vortex briefly and let stand for 15 min at room temperature.
  5. Add 1 ml of 0.1% Triton™ X-100 to each tube.
  6. Vortex and let stand for 30 min at room temperature.
  7. Add 1 ml incubation buffer.
  8. Pellet cells by centrifugation and aspirate supernatant.
  9. Repeat steps 7 and 8.
  10. Resuspend cells in ice-cold 50% methanol in PBS (store methanol solution at -20°C until use).
  11. Incubate at least 10 min on ice.
  12. Proceed with staining or store cells at -20°C in 50% methanol.

C. Staining Using Conjugated Primary Antibodies

NOTE: Account for isotype-matched controls for monoclonal antibodies or species matched IgG for polyclonal antibodies.

  1. Add 2–3 ml incubation buffer to each tube and rinse by centrifugation. Repeat.
  2. Add primary antibodies diluted as recommended on datasheet or product webpage in incubation buffer.
  3. Incubate for 1 hr at room temperature.
  4. Wash by centrifugation in 2–3 ml incubation buffer.
  5. Resuspend cells in 0.5 ml PBS and analyze on flow cytometer.

Reference: Chow S, Hedley D, Grom P, Magari R, Jacobberger JW, Shankey TV (2005) Whole blood fixation and permeabilization protocol with red blood cell lysis for flow cytometry of intracellular phosphorylated epitopes in leukocyte subpopulations. Cytometry A 67(1), 4–17.

posted November 2008

revised September 2013

protocol id: 407

Product Usage Information

Application Dilutions
Flow Cytometry 1:50

Storage: Supplied in PBS (pH 7.2), less than 0.1% sodium azide and 2 mg/ml BSA. Store at 4°C. Do not aliquot the antibody. Protect from light. Do not freeze.

Specificity / Sensitivity

HSP70 (D69) Antibody (Alexa Fluor® 488 Conjugate) detects endogenous levels of total HSP70 protein. This antibody does not cross-react with other HSPs.  


Species Reactivity: Human, Mouse, Rat, Monkey

Source / Purification

Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues around Asp69 of human HSP70. Antibodies are purified by protein A and peptide affinity chromatography. This antibody was conjugated to Alexa Fluor® 488 under optimal conditions with an F/P ratio of 2-6.

HSP70 and HSP90 are molecular chaperones expressed constitutively under normal conditions to maintain protein homeostasis and are induced upon environmental stress (1). Both HSP70 and HSP90 are able to interact with unfolded proteins to prevent irreversible aggregation and catalyze the refolding of their substrates in an ATP- and co-chaperone-dependent manner (1). HSP70 has a broad range of substrates including newly synthesized and denatured proteins, while HSP90 tends to have a more limited subset of substrates, most of which are signaling molecules. HSP70 and HSP90 often function collaboratively in a multi-chaperone system, which requires a minimal set of co-chaperones: HSP40, Hop, and p23 (2,3). The co-chaperones either regulate the intrinsic ATPase activity of the chaperones or recruit chaperones to specific substrates or subcellular compartments (1,4). When the ubiquitin ligase CHIP associates with the HSP70/HSP90 complex as a cofactor, the unfolded substrates are subjected to degradation by the proteasome (4). The biological functions of HSP70/HSP90 extend beyond their chaperone activity. They are essential for the maturation and inactivation of nuclear hormones and other signaling molecules (1,3). They also play a role in vesicle formation and protein trafficking (2).


1.  Nollen, E.A. and Morimoto, R.I. (2002) J. Cell Sci. 115, 2809-2816.

2.  Young, J.C. et al. (2003) Trends Biochem. Sci. 28, 541-547.

3.  Pratt, W.B. and Toft, D.O. (2003) Exp. Biol. Med. 228, 111-133.

4.  Hohfeld, J. et al. (2001) EMBO Rep. 2, 885-890.


Entrez-Gene Id 3303
Swiss-Prot Acc. P08107


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.
The Alexa Fluor® dye antibody conjugates in this product are sold under license from Life Technologies Corporation for research use only, except for use in combination with DNA microarrays. The Alexa Fluor® dyes (except for Alexa Fluor® 430 dye) are covered by pending and issued patents. Alexa Fluor® is a registered trademark of Molecular Probes, Inc.