Upstream / Downstream

pathwayImage

Explore pathways related to this product.

Our U.S. Offices Will Be Closing Early

Our U.S. offices will be closing early on November 24th at 6:00 PM EST.

To get local purchase information on this product, click here

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

Product Includes Quantity Applications Reactivity MW(kDa) Isotype
Phospho-PDGF Receptor β (Tyr751) (C63G6) Rabbit mAb 4549 40 µl
Western Blotting
H M 190 Rabbit IgG
PDGF Receptor β (28E1) Rabbit mAb 3169 40 µl
Western Blotting Immunoprecipitation Immunohistochemistry Immunofluorescence
H M R 190 Rabbit IgG
Phospho-SHP-2 (Tyr542) Antibody 3751 40 µl
Western Blotting Immunoprecipitation
H M R 72 Rabbit 
SHP-2 (D50F2) Rabbit mAb 3397 40 µl
Western Blotting Immunoprecipitation
H M R Mk 72 Rabbit IgG
Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb 4060 40 µl
Western Blotting Immunoprecipitation Immunohistochemistry Immunofluorescence Flow Cytometry
H M R Hm Mk Dm Z B 60 Rabbit IgG
Akt (pan) (C67E7) Rabbit mAb 4691 40 µl
Western Blotting Immunoprecipitation Immunohistochemistry Immunofluorescence Flow Cytometry
H M R Mk Dm 60 Rabbit IgG
Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb 4370 40 µl
Western Blotting Immunoprecipitation Immunohistochemistry Immunofluorescence Flow Cytometry
H M R Hm Mk Mi Dm Z B Dg Pg Sc 44, 42 Rabbit IgG
p44/42 MAPK (Erk1/2) (137F5) Rabbit mAb 4695 40 µl
Western Blotting Immunoprecipitation Immunohistochemistry Immunofluorescence Flow Cytometry
H M R Hm Mk Mi Dm Z B Dg Pg Ce 42, 44 Rabbit 
Anti-rabbit IgG, HRP-linked Antibody 7074 100 µl
Western Blotting
All Goat 

Product Description

The PDGF Receptor Activation Antibody Sampler Kit provides an economical means to evaluate the activation status of multiple members of the PDGF receptor pathway, including SHP-2, Akt, and p44/42 MAPK (Erk1/2). The kit includes enough antibody to perform four western blot experiments per primary antibody.


Specificity / Sensitivity

Unless otherwise indicated, each antibody in the PDGF Receptor Activation Antibody Sampler Kit recognizes endogenous levels of its specific target. Activation state antibodies detect their intended targets only when phosphorylated at the indicated site. Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb detects endogenous levels of p44 and p42 MAP kinase when dually phosphorylated at Thr202 and Tyr204 of Erk1 (Thr185/Tyr187 of Erk2) and singly phosphorylated at Thr202. Phospho-PDGF Receptor β (Tyr751) (C63G6) Rabbit mAb may cross-react with activated PDGF receptor α and other protein tyrosine kinases when highly overexpressed. PDGF Receptor β (28E1) Rabbit mAb may cross-react with PDGF receptor α when highly overexpressed. Phospho-SHP-2 (Tyr542) Antibody may cross-react with activated receptor tyrosine kinases.


Source / Purification

Polyclonal antibodies are produced by immunizing animals with synthetic phosphopeptides corresponding to residues surrounding Tyr542 of human SHP-2 protein. Polyclonal antibodies are purified by protein A and peptide affinity chromatography. Monoclonal activation state antibodies are produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Ser473 of human Akt, Thr202/Tyr204 of human p44 MAP kinase, or Tyr751 of human PDGF receptor β. Monoclonal control antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues in the carboxy-terminal sequence of mouse Akt, the carboxy terminus of rat p44 MAP kinase, the carboxy-terminus of human SHP-2, or a fusion containing a carboxy-terminal fragment of human PDGF receptor β protein.

Platelet derived growth factor (PDGF) family proteins form dimers (PDGF AA, PDGF AB, PDGF BB, PDGF CC, and PDGF DD) that bind receptor tyrosine kinases PDGF receptor α (PDGFRα) and PDGF receptor β (PDGFRβ) in a specific pattern. PDGFRβ homodimers bind PDGF BB and DD homodimers and the PDGF AB heterodimer. Heteromeric receptor PDGF α/β binds PDGF B, C, and D homodimers and the PDGF AB heterodimer (1). Ligand binding induces PDGF receptor dimerization and autophosphorylation, followed by binding and activation of cytoplasmic SH2 domain-containing signal transduction molecules, such as GRB2, Src, GAP, PI3 kinase, PLCγ, and NCK. Activated PDGF receptors initiate signaling pathways that control cell growth, actin reorganization, migration, and differentiation (2). PDGFRβ kinase-insert region residue Tyr751 forms the PI3 kinase docking site, and phosphorylation of PDGFRβ at this site inhibits the association between the SH2 domain of the PI3 kinase p85 subunit and PDGFRβ (3,4).

SHP-2 (PTPN11) is a nonreceptor protein tyrosine phosphatase that participates in signaling pathways that control cell growth, differentiation, migration, and death (5). Activation of SHP-2 and its association with Gab1 is critical for sustained Erk activation downstream of growth factor receptors and cytokines (6). Phosphorylation of SHP-2 at Tyr542 and Tyr580 in response to growth factor receptor activation is thought to relieve basal inhibition and stimulate SHP-2 tyrosine phosphatase activity (7,8).

Insulin and various growth/survival factors activate Akt, a kinase that acts in a wortmannin-sensitive pathway involving PI3 kinase to help control survival and apoptosis (9-11). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (12) and by phosphorylation within the carboxy terminus at Ser473.

The p44/42 MAPK (Erk1/2) signaling pathway is activated in response to extracellular stimuli including mitogens, growth factors, and cytokines (13-15). Research suggests that this pathway is an important target in cancer diagnosis and treatment (16). External stimuli lead to activation of a kinase cascade that results in the activation of p44 and p42 by a MAP kinase. MEK1 and MEK2 activate p44 and p42 through phosphorylation of activation loop residues Thr202/Tyr204 and Thr185/Tyr187, respectively.

Clinical studies describe PDGF expression in a number of different solid tumors, from glioblastomas to prostate carcinomas. The biological role of PDGF signaling in these tumors varies from autocrine stimulation of cancer cell growth to more subtle paracrine interactions involving adjacent stroma and even angiogenesis. Targeting PDGF signaling may be an effective way for tumor treatment (17).


1.  Deuel, T.F. et al. (1988) Biofactors 1, 213-7.

2.  Qu, C.K. (2000) Cell Res 10, 279-88.

3.  Franke, T.F. et al. (1997) Cell 88, 435-7.

4.  Roux, P.P. and Blenis, J. (2004) Microbiol Mol Biol Rev 68, 320-44.

5.  Ostman, A. and Heldin, C.H. (2001) Adv Cancer Res 80, 1-38.

6.  Maroun, C.R. et al. (2000) Mol Cell Biol 20, 8513-25.

7.  Burgering, B.M. and Coffer, P.J. (1995) Nature 376, 599-602.

8.  Baccarini, M. (2005) FEBS Lett 579, 3271-7.

9.  Betsholtz, C. et al. (2001) Bioessays 23, 494-507.

10.  Franke, T.F. et al. (1995) Cell 81, 727-36.

11.  Meloche, S. and Pouysségur, J. (2007) Oncogene 26, 3227-39.

12.  Ramalingam, K. et al. (1995) Bioorg Med Chem 3, 1263-72.

13.  Bennett, A.M. et al. (1994) Proc Natl Acad Sci USA 91, 7335-9.

14.  Alessi, D.R. et al. (1996) EMBO J 15, 6541-51.

15.  Roberts, P.J. and Der, C.J. (2007) Oncogene 26, 3291-310.

16.  Lu, W. et al. (2001) Mol Cell 8, 759-69.

17.  George, D. (2001) Semin Oncol 28, 27-33.


Entrez-Gene Id 207, 208, 10000, 5595, 5594, 5159, 5781
Swiss-Prot Acc. P31749, P31751, Q9Y243, P27361, P28482, P09619, Q06124

Protein Specific References

Germack R and Dickenson JM (2000) Br J Pharmacol 130, 867–74

Wick MJ et al. (2000) J Biol Chem 275, 40400–6

Rane MJ et al. (2001) J Biol Chem 276, 3517–23

Guizzetti M and Costa LG (2001) Neuroreport 12, 1639–42

Brognard J et al. (2001) Cancer Res 61, 3986–97

Maira SM et al. (2001) Science 294, 374–80

Schönherr E et al. (2001) J Biol Chem 276, 40687–92

Hill MM et al. (2001) J Biol Chem 276, 25643–6

Dhawan P et al. (2002) Cancer Res 62, 7335–42

Conus NM et al. (2002) J Biol Chem 277, 38021–8

Sano H et al. (2002) J Biol Chem 277, 19439–47

Egawa K et al. (2002) J Biol Chem 277, 38863–9

Kisseleva MV et al. (2002) J Biol Chem 277, 6266–72

Barry FA and Gibbins JM (2002) J Biol Chem 277, 12874–8

Ikonomov OC et al. (2002) Endocrinology 143, 4742–54

Rani MR et al. (2002) J Biol Chem 277, 38456–61

Ho R et al. (2002) Cancer Res 62, 6462–6

Wan X and Helman LJ (2003) Oncogene 22, 8205–11

Fukuda T et al. (2003) J Biol Chem 278, 51324–33

Kim HH et al. (2003) FASEB J 17, 2163–5

Min YH et al. (2004) Cancer Res 64, 5225–31

Tazzari PL et al. (2004) Br J Haematol 126, 675–81

Matsuzaki H et al. (2004) Biochemistry 43, 4284–93

Wolfrum S et al. (2004) Arterioscler Thromb Vasc Biol 24, 1842–7

Kaneko Y et al. (2004) J Cell Sci 117, 407–15

Esfandiarei M et al. (2004) J Virol 78, 4289–98

Baudhuin LM et al. (2004) FASEB J 18, 341–3

Dietze EC et al. (2004) Oncogene 23, 3851–62

Wu T et al. (2004) Mol Cancer Ther 3, 299–307

Honjo S et al. (2005) DNA Cell Biol 24, 141–7

Karlsson HK et al. (2005) Diabetes 54, 1459–67

Viniegra JG et al. (2005) J Biol Chem 280, 4029–36

Le XF et al. (2005) J Biol Chem 280, 2092–104

Smith E and Frenkel B (2005) J Biol Chem 280, 2388–94

Edwards LA et al. (2005) Oncogene 24, 3596–605

Karlsson HK et al. (2005) Diabetes 54, 1692–7

Kippenberger S et al. (2005) J Biol Chem 280, 3060–7

Jung HS et al. (2005) Mol Endocrinol 19, 2748–59

Khundmiri SJ et al. (2006) Am J Physiol Cell Physiol 291, C1247–57

Hers I and (2007) Blood 110, 4243–52

Ananthanarayanan B et al. (2007) J Biol Chem 282, 36634–41

Zunder ER et al. (2008) Cancer Cell 14, 180–92

Grenegård M et al. (2008) J Biol Chem 283, 18493–504

Abubaker J et al. (2009) Mol Cancer 8, 51

Chen PL and Easton AS (2011) Curr Neurovasc Res 8, 14–24

Van Aller GS et al. (2011) Biochem Biophys Res Commun 406, 194–9

Uesugi A et al. (2011) Cancer Res 71, 5765–78

Ou YH et al. (2011) Mol Cell 41, 458–70

Wang S et al. (2012) PLoS One 7, e37427

Glidden EJ et al. (2012) J Biol Chem 287, 581–8

Shih MC et al. (2012) Oncogene 31, 2389–400

Misra UK and Pizzo SV (2012) J Cell Biochem 113, 1488–500

Germack R and Dickenson JM (2000) Br J Pharmacol 130, 867–74

Wick MJ et al. (2000) J Biol Chem 275, 40400–6

Rane MJ et al. (2001) J Biol Chem 276, 3517–23

Guizzetti M and Costa LG (2001) Neuroreport 12, 1639–42

Brognard J et al. (2001) Cancer Res 61, 3986–97

Maira SM et al. (2001) Science 294, 374–80

Schönherr E et al. (2001) J Biol Chem 276, 40687–92

Hill MM et al. (2001) J Biol Chem 276, 25643–6

Dhawan P et al. (2002) Cancer Res 62, 7335–42

Conus NM et al. (2002) J Biol Chem 277, 38021–8

Sano H et al. (2002) J Biol Chem 277, 19439–47

Egawa K et al. (2002) J Biol Chem 277, 38863–9

Kisseleva MV et al. (2002) J Biol Chem 277, 6266–72

Barry FA and Gibbins JM (2002) J Biol Chem 277, 12874–8

Ikonomov OC et al. (2002) Endocrinology 143, 4742–54

Rani MR et al. (2002) J Biol Chem 277, 38456–61

Ho R et al. (2002) Cancer Res 62, 6462–6

Wan X and Helman LJ (2003) Oncogene 22, 8205–11

Fukuda T et al. (2003) J Biol Chem 278, 51324–33

Kim HH et al. (2003) FASEB J 17, 2163–5

Min YH et al. (2004) Cancer Res 64, 5225–31

Tazzari PL et al. (2004) Br J Haematol 126, 675–81

Matsuzaki H et al. (2004) Biochemistry 43, 4284–93

Wolfrum S et al. (2004) Arterioscler Thromb Vasc Biol 24, 1842–7

Kaneko Y et al. (2004) J Cell Sci 117, 407–15

Esfandiarei M et al. (2004) J Virol 78, 4289–98

Baudhuin LM et al. (2004) FASEB J 18, 341–3

Dietze EC et al. (2004) Oncogene 23, 3851–62

Wu T et al. (2004) Mol Cancer Ther 3, 299–307

Honjo S et al. (2005) DNA Cell Biol 24, 141–7

Karlsson HK et al. (2005) Diabetes 54, 1459–67

Viniegra JG et al. (2005) J Biol Chem 280, 4029–36

Le XF et al. (2005) J Biol Chem 280, 2092–104

Smith E and Frenkel B (2005) J Biol Chem 280, 2388–94

Edwards LA et al. (2005) Oncogene 24, 3596–605

Karlsson HK et al. (2005) Diabetes 54, 1692–7

Kippenberger S et al. (2005) J Biol Chem 280, 3060–7

Jung HS et al. (2005) Mol Endocrinol 19, 2748–59

Khundmiri SJ et al. (2006) Am J Physiol Cell Physiol 291, C1247–57

Hers I and (2007) Blood 110, 4243–52

Ananthanarayanan B et al. (2007) J Biol Chem 282, 36634–41

Zunder ER et al. (2008) Cancer Cell 14, 180–92

Grenegård M et al. (2008) J Biol Chem 283, 18493–504

Abubaker J et al. (2009) Mol Cancer 8, 51

Chen PL and Easton AS (2011) Curr Neurovasc Res 8, 14–24

Van Aller GS et al. (2011) Biochem Biophys Res Commun 406, 194–9

Uesugi A et al. (2011) Cancer Res 71, 5765–78

Ou YH et al. (2011) Mol Cell 41, 458–70

Wang S et al. (2012) PLoS One 7, e37427

Glidden EJ et al. (2012) J Biol Chem 287, 581–8

Shih MC et al. (2012) Oncogene 31, 2389–400

Misra UK and Pizzo SV (2012) J Cell Biochem 113, 1488–500

Johnson AL et al. (2001) Biol Reprod 64, 1566–74

Zhang M and Riedel H (2009) J Cell Biochem 107, 65–75

Johnson AL et al. (2001) Biol Reprod 64, 1566–74

Zhang M and Riedel H (2009) J Cell Biochem 107, 65–75

Syme CA et al. (2005) J Biol Chem 280, 11281–8

Syme CA et al. (2005) J Biol Chem 280, 11281–8

Li Z et al. (2001) J Biol Chem 276, 42226–32

Li Z et al. (2001) J Biol Chem 276, 42226–32

Gao BB et al. (2006) Biochem J 397, 337–44

Gao BB et al. (2006) Biochem J 397, 337–44

MacGillivray M et al. (2003) J Biol Chem 278, 27190–8

Mohi MG et al. (2005) Cancer Cell 7, 179–91

Voena C et al. (2007) Cancer Res 67, 4278–86

MacGillivray M et al. (2003) J Biol Chem 278, 27190–8

Mohi MG et al. (2005) Cancer Cell 7, 179–91

Voena C et al. (2007) Cancer Res 67, 4278–86


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.
XP® is a trademark of Cell Signaling Technology, Inc.
U.S. Patent No. 5,675,063.