Upstream / Downstream

pathwayImage

Explore pathways related to this product.

Antibody Guarantee

CST Antibody Performance Guarantee

LEARN MORE  

To get local purchase information on this product, click here

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

REACTIVITY SENSITIVITY MW (kDa) SOURCE
H M R Mk GP Endogenous 68 Rabbit

Western Blotting

Western blot analysis of extracts from SH-SY5Y, C6 and NIH/3T3 cells, using PAK1 Antibody.

Learn more about how we get our images

Western Blotting

Western blot analysis of extracts from HeLa cells transfected with 100 nM control siRNA #6201 (-) or PAK1 siRNA, using PAK1 Antibody #2602 and p42 MAP Kinase (Erk2) Antibody #9108. The PAK1 Antibody confirms silencing of PAK1 expression, and p42 MAP Kinase (Erk2) Antibody is used to control for loading and specificity of PAK1 siRNA.

Learn more about how we get our images
Image

Immunoprecipitation

Immunoprecipitation of PAK1 from C6 and SH-SY5Y cells followed by Western blot analysis, using PAK1 Antibody.

Learn more about how we get our images
Image

Immunohistochemistry (Paraffin)

Immunohistochemical analysis of paraffin-embedded human breast carcinoma, showing cytoplasmic localization, using PAK1 Antibody.

Learn more about how we get our images
Image
Image
Image
Image
Page

Western Blotting Protocol

For western blots, incubate membrane with diluted primary antibody in 5% w/v BSA, 1X TBS, 0.1% Tween® 20 at 4°C with gentle shaking, overnight.

NOTE: Please refer to primary antibody datasheet or product webpage for recommended antibody dilution.

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 20X Phosphate Buffered Saline (PBS): (#9808) To prepare 1 L 1X PBS: add 50 ml 20X PBS to 950 ml dH2O, mix.
  2. 10X Tris Buffered Saline (TBS): (#12498) To prepare 1 L 1X TBS: add 100 ml 10X to 900 ml dH2O, mix.
  3. 1X SDS Sample Buffer: Blue Loading Pack (#7722) or Red Loading Pack (#7723) Prepare fresh 3X reducing loading buffer by adding 1/10 volume 30X DTT to 1 volume of 3X SDS loading buffer. Dilute to 1X with dH2O.
  4. 10X Tris-Glycine SDS Running Buffer: (#4050) To prepare 1 L 1X running buffer: add 100 ml 10X running buffer to 900 ml dH2O, mix.
  5. 10X Tris-Glycine Transfer Buffer: (#12539) To prepare 1 L 1X Transfer Buffer: add 100 ml 10X Transfer Buffer to 200 ml methanol + 700 ml dH2O, mix.
  6. 10X Tris Buffered Saline with Tween® 20 (TBST): (#9997) To prepare 1 L 1X TBST: add 100 ml 10X TBST to 900 ml dH2O, mix.
  7. Nonfat Dry Milk: (#9999).
  8. Blocking Buffer: 1X TBST with 5% w/v nonfat dry milk; for 150 ml, add 7.5 g nonfat dry milk to 150 ml 1X TBST and mix well.
  9. Wash Buffer: (#9997) 1X TBST.
  10. Bovine Serum Albumin (BSA): (#9998).
  11. Primary Antibody Dilution Buffer: 1X TBST with 5% BSA; for 20 ml, add 1.0 g BSA to 20 ml 1X TBST and mix well.
  12. Biotinylated Protein Ladder Detection Pack: (#7727).
  13. Prestained Protein Marker, Broad Range (Premixed Format): (#7720).
  14. Blotting Membrane and Paper: (#12369) This protocol has been optimized for nitrocellulose membranes. Pore size 0.2 µm is generally recommended.
  15. Secondary Antibody Conjugated to HRP: Anti-rabbit IgG, HRP-linked Antibody (#7074).
  16. Detection Reagent: SignalFire™ ECL Reagent (#6883).

B. Protein Blotting

A general protocol for sample preparation.

  1. Treat cells by adding fresh media containing regulator for desired time.
  2. Aspirate media from cultures; wash cells with 1X PBS; aspirate.
  3. Lyse cells by adding 1X SDS sample buffer (100 µl per well of 6-well plate or 500 µl for a 10 cm diameter plate). Immediately scrape the cells off the plate and transfer the extract to a microcentrifuge tube. Keep on ice.
  4. Sonicate for 10–15 sec to complete cell lysis and shear DNA (to reduce sample viscosity).
  5. Heat a 20 µl sample to 95–100°C for 5 min; cool on ice.
  6. Microcentrifuge for 5 min.
  7. Load 20 µl onto SDS-PAGE gel (10 cm x 10 cm).

    NOTE: Loading of prestained molecular weight markers (#7720, 10 µl/lane) to verify electrotransfer and biotinylated protein ladder (#7727, 10 µl/lane) to determine molecular weights are recommended.

  8. Electrotransfer to nitrocellulose membrane (#12369).

C. Membrane Blocking and Antibody Incubations

NOTE: Volumes are for 10 cm x 10 cm (100 cm2) of membrane; for different sized membranes, adjust volumes accordingly.

I. Membrane Blocking

  1. (Optional) After transfer, wash nitrocellulose membrane with 25 ml TBS for 5 min at room temperature.
  2. Incubate membrane in 25 ml of blocking buffer for 1 hr at room temperature.
  3. Wash three times for 5 min each with 15 ml of TBST.

II. Primary Antibody Incubation

  1. Incubate membrane and primary antibody (at the appropriate dilution and diluent as recommended in the product datasheet) in 10 ml primary antibody dilution buffer with gentle agitation overnight at 4°C.
  2. Wash three times for 5 min each with 15 ml of TBST.
  3. Incubate membrane with Anti-rabbit IgG, HRP-linked Antibody (#7074 at 1:2000) and anti-biotin, HRP-linked Antibody (#7075 at 1:1000–1:3000) to detect biotinylated protein markers in 10 ml of blocking buffer with gentle agitation for 1 hr at room temperature.
  4. Wash three times for 5 min each with 15 ml of TBST.
  5. Proceed with detection (Section D).

D. Detection of Proteins

Directions for Use:

  1. Wash membrane-bound HRP (antibody conjugate) three times for 5 minutes in TBST.
  2. Prepare 1X SignalFire™ ECL Reagent (#6883) by diluting one part 2X Reagent A and one part 2X Reagent B (e.g. for 10 ml, add 5 ml Reagent A and 5 ml Reagent B). Mix well.
  3. Incubate substrate with membrane for 1 minute, remove excess solution (membrane remains wet), wrap in plastic and expose to X-ray film.

* Avoid repeated exposure to skin.

posted June 2005

revised November 2013

protocol id: 10

Western Blot Reprobing Protocol

Reprobing of an existing membrane is a convenient means to immunoblot for multiple proteins independently when only a limited amount of sample is available. It should be noted that for the best possible results a fresh blot is always recommended. Reprobing can be a valuable method but with each reprobing of a blot there is potential for increased background signal. Additionally, it is recommended that you verify the removal of the first antibody complex prior to reprobing so that signal attributed to binding of the new antibody is not leftover signal from the first immunoblotting experiment. This can be done by re-exposing the blot to ECL reagents and making sure there is no signal prior to adding the next primary antibody.

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalently purified water.

  1. Wash Buffer: Tris Buffered Saline with Tween® 20 (TBST-10X) (#9997)
  2. Stripping Buffer: To prepare 100 ml, mix 0.76 g Tris base, 2 g SDS and 700 μl β-mercaptoethanol. Bring to 100 ml with deionized H2O. Adjust pH to 6.8 with HCl.

B. Protocol

  1. After film exposure, wash membrane four times for 5 min each in TBST. Best results are obtained if the membrane is not allowed to dry.
  2. Incubate membrane for 30 min at 50°C in stripping buffer (with slight agitation).
  3. Wash membrane six times for 5 min each in TBST.
  4. (Optional) To assure that the original signal is removed, wash membrane twice for 5 min each with 10 ml of TBST. Incubate membrane with LumiGLO® with gentle agitation for 1 min at room temperature. Drain membrane of excess developing solution. Do not let dry. Wrap in plastic wrap and expose to x-ray film.
  5. Wash membrane again four times for 5 min each in TBST.
  6. The membrane is now ready to reuse. Start detection at the "Membrane Blocking and Antibody Incubations" step in the Western Immunoblotting Protocol.

posted June 2005

Page

Immunoprecipitation for Native Proteins

This protocol is intended for immunoprecipitation of native proteins for analysis by western immunoblot or kinase activity.

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 20X Phosphate Buffered Saline (PBS): (#9808) To prepare 1 L of 1X PBS, add 50 ml 20X PBS to 950 ml dH2O, mix.
  2. 10X Cell Lysis Buffer: (#9803) To prepare 10 ml of 1X cell lysis buffer, add 1 ml cell lysis buffer to 9 ml dH2O, mix.

    NOTE: Add 1 mM PMSF (#8553) immediately prior to use.

  3. 3X SDS Sample Buffer: Blue Loading Pack (#7722) or Red Loading Pack (#7723) Prepare fresh 3X reducing loading buffer by adding 1/10 volume 30X DTT to 1 volume of 3X SDS loading buffer.
  4. Protein A Magnetic Beads: Use Protein A (#8687) for rabbit IgG immunoprecipitation.
  5. 6-Tube Magnetic Separation Rack: (#7017).
  6. 10X Kinase Buffer (for kinase assays): (#9802) To Prepare 1 ml of 1X kinase buffer, add 100 µl 10X kinase buffer to 900 µl dH2O, mix.
  7. ATP (10 mM) (for kinase assays): (#9804) To prepare 0.5 ml of ATP (200 µM), add 10 µl ATP (10 mM) to 490 µl 1X kinase buffer.

B. Preparing Cell Lysates

  1. Aspirate media. Treat cells by adding fresh media containing regulator for desired time.
  2. To harvest cells under nondenaturing conditions, remove media and rinse cells once with ice-cold 1X PBS.
  3. Remove PBS and add 0.5 ml ice-cold 1X cell lysis buffer to each plate (10 cm) and incubate on ice for 5 min.
  4. Scrape cells off the plate and transfer to microcentrifuge tubes. Keep on ice.
  5. Sonicate on ice three times for 5 sec each.
  6. Microcentrifuge for 10 min at 4°C, 14,000 x g and transfer the supernatant to a new tube. The supernatant is the cell lysate. If necessary, lysate can be stored at -80°C.

C. Immunoprecipitation

Cell Lysate Pre-Clearing (Optional)

  1. Vortex to mix beads.
  2. Add 10–30 µl of 50% Protein A magnetic bead slurry of to 200 µl cell lysate at 1 mg/ml.
  3. Incubate with rotation at 4°C for 30–60 min.
  4. Pellet beads using magnetic separation rack. Transfer the supernatant to a fresh tube.
  5. Proceed to immunoprecipitation below.

Immunoprecipitation

  1. Add primary antibody (at the appropriate dilution as recommended in the product datasheet) to 200 µl cell lysate at 1 mg/ml. Incubate with rotation overnight at 4°C.
  2. Add protein A magnetic beads (10–30 µl of 50% bead slurry). Incubate with rotation for 10–30 min at 4°C.
  3. Pellet beads using magnetic separation rack. Wash pellet five times with 500 µl of 1X cell lysis buffer. Keep on ice between washes.
  4. Proceed to analyze by western immunoblotting or kinase activity (section D).

D. Sample Analysis

Proceed to one of the following specific set of steps.

For Analysis by Western Immunoblotting

  1. Resuspend the pellet with 20 µl 3X SDS sample buffer. Vortex, then microcentrifuge for 30 sec at 14,000 x g.
  2. Heat the sample to 95–100°C for 2-5 min and microcentrifuge for 1 min at 14,000 x g.
  3. Load the sample (15–30 µl) on a 4–20% gel for SDS-PAGE.
  4. Analyze sample by western blot (see Western Immunoblotting Protocol).

NOTE: To minimize masking caused by denatured IgG heavy chains (~50 kDa), we recommend using Mouse Anti-Rabbit IgG (Light-Chain Specific) (L57A3) mAb (#3677) or Mouse Anti-Rabbit IgG (Conformation Specific) (L27A9) mAb (#3678) (or HRP conjugate #5127). To minimize masking caused by denatured IgG light chains (~25 kDa), we recommend using Mouse Anti-Rabbit IgG (Conformation Specific) (L27A9) mAb (#3678) (or HRP conjugate #5127).

For Analysis by Kinase Assay

  1. Wash pellet twice with 500 µl 1X kinase buffer. Keep on ice.
  2. Suspend pellet in 40 µl 1X kinase buffer supplemented with 200 µM ATP and appropriate substrate.
  3. Incubate for 30 min at 30°C.
  4. Terminate reaction with 20 µl 3X SDS sample buffer. Vortex, then microcentrifuge for 30 sec.
  5. Transfer supernatant containing phosphorylated substrate to another tube.
  6. Heat the sample to 95–100°C for 2–5 min and microcentrifuge for 1 min at 14,000 x g.
  7. Load the sample (15–30 µl) on SDS-PAGE (4–20%).

posted December 2008

revised November 2013

protocol id: 410

Page

Immunohistochemistry (Paraffin)

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. Xylene.
  2. Ethanol, anhydrous denatured, histological grade (100% and 95%).
  3. Deionized water (dH2O).
  4. Hematoxylin (optional).
  5. Wash Buffer:
    1. 1X Tris Buffered Saline with Tween® 20 (TBST): To prepare 1L 1X TBST add 100 ml 10X Tris Buffered Saline with Tween® 20 (#9997) to 900 ml dH20, mix.
  6. SignalStain® Antibody Diluent (#8112).
  7. Antigen Unmasking Citrate: 10 mM Sodium Citrate Buffer: To prepare 1 L, add 2.94 g sodium citrate trisodium salt dihydrate (C6H5Na3O7•2H2O) to 1 L dH2O. Adjust pH to 6.0.
  8. 3% Hydrogen Peroxide: To prepare 100 ml, add 10 ml 30% H2O2 to 90 ml dH2O.
  9. Blocking Solution: TBST/5% Normal Goat Serum: to 5 ml 1X TBST, add 250 µl Normal Goat Serum (#5425).
  10. Detection System: SignalStain® Boost IHC Detection Reagents (HRP, Rabbit #8114).
  11. Substrate: Vector® NovaRED™ (Vector Laboratories).

B. Deparaffinization/Rehydration

NOTE: Do not allow slides to dry at any time during this procedure.

  1. Deparaffinize/hydrate sections:
    1. Incubate sections in three washes of xylene for 5 min each.
    2. Incubate sections in two washes of 100% ethanol for 10 min each.
    3. Incubate sections in two washes of 95% ethanol for 10 min each.
  2. Wash sections two times in dH2O for 5 min each.

C. Antigen Unmasking

For Citrate: Bring slides to a boil in 10 mM sodium citrate buffer, pH 6.0; maintain at a sub-boiling temperature for 10 min. Cool slides on bench top for 30 min.

D. Staining

  1. Wash sections in dH2O three times for 5 min each.
  2. Incubate sections in 3% hydrogen peroxide for 10 min.
  3. Wash sections in dH2O two times for 5 min each.
  4. Wash sections in wash buffer for 5 min.
  5. Block each section with 100–400 µl blocking solution for 1 hr at room temperature.
  6. Remove blocking solution and add 100–400 µl primary antibody diluted in SignalStain® Antibody Diluent (#8112) to each section. Incubate overnight at 4°C.
  7. Equilibrate SignalStain® Boost Detection Reagent (HRP, Rabbit #8114) to room temperature.
  8. Remove antibody solution and wash sections with wash buffer three times for 5 min each.
  9. Cover section with 1–3 drops SignalStain® Boost Detection Reagent (HRP, Rabbit #8114) as needed. Incubate in a humidified chamber for 30 min at room temperature.
  10. Wash sections three times with wash buffer for 5 min each.
  11. Prepare Vector® NovaRED™ per manufacturer's recommendations.
  12. Apply 100-400 µl substrate to each section and monitor closely. 5-15 minutes generally provides an acceptable staining intensity.
  13. Immerse slides in dH2O.
  14. If desired, counterstain sections with hematoxylin per manufacturer’s instructions.
  15. Wash sections in dH2O two times for 5 min each.
  16. Dehydrate sections:
    1. Incubate sections in 95% ethanol two times for 10 sec each.
    2. Repeat in 100% ethanol, incubating sections two times for 10 sec each.
    3. Repeat in xylene, incubating sections two times for 10 sec each.
  17. Mount sections with coverslips.

posted February 2010

revised November 2013

protocol id: 300

Product Usage Information

Application Dilutions
Western Blotting 1:1000
Immunoprecipitation 1:50
Immunohistochemistry 1:100

Storage: Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

Specificity / Sensitivity

PAK1 Antibody detects endogenous levels of total PAK1 protein. It does not cross-react with PAK2, PAK3 or other PAK family members.


Species Reactivity: Human, Mouse, Rat, Monkey, Guinea Pig

Source / Purification

Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to the amino-terminus of human PAK1. Antibodies are purified by protein A and peptide affinity chromatography.

The p21-activated kinase (PAK) family of serine/threonine kinases is engaged in multiple cellular processes, including cytoskeletal reorganization, MAPK signaling, apoptotic signaling, control of phagocyte NADPH oxidase, and growth factor-induced neurite outgrowth (1,2). Several mechanisms that induce PAK activity have been reported. Binding of Rac/Cdc42 to the CRIB (or PBD) domain near the amino terminus of PAK causes autophosphorylation and conformational changes in PAK (1). Phosphorylation of PAK1 at Thr423 by PDK induces activation of PAK1 (3). Several autophosphorylation sites have been identified, including Ser199 and Ser204 of PAK1 and Ser192 and Ser197 of PAK2 (4,5). Because the autophosphorylation sites are located in the amino-terminal inhibitory domain, it has been hypothesized that modification in this region prevents the kinase from reverting to an inactive conformation (6). Research indicates that phosphorylation at Ser144 of PAK1 or Ser139 of PAK3 (located in the kinase inhibitory domain) affects kinase activity (7). Phosphorylation at Ser21 of PAK1 or Ser20 of PAK2 regulates binding with the adaptor protein Nck (8). PAK4, PAK5, and PAK6 have lower sequence similarity with PAK1-3 in the amino-terminal regulatory region (9). Phosphorylation at Ser474 of PAK4, a site analogous to Thr423 of PAK1, may play a pivotal role in regulating the activity and function of PAK4 (10).


1.  Knaus, U.G. and Bokoch, G.M. (1998) Int. J. Biochem. Cell Biol. 30, 857-862.

2.  Daniels, R.H. et al. (1998) EMBO J. 17, 754-764.

3.  King, C.C. et al. (2000) J. Biol. Chem. 275, 41201-41209.

4.  Manser, E. et al. (1997) Mol. Cell. Biol. 17, 1129-1143.

5.  Gatti, A. et al. (1999) J. Biol. Chem. 274, 8022-8028.

6.  Lei, M. et al. (2000) Cell 102, 387-397.

7.  Chong, C. et al. (2001) J. Biol. Chem. 276, 17347-17353.

8.  Zhao, Z. et al. (2000) Mol. Cell. Biol. 20, 3906-3917.

9.  Abo, A. et al. (1998) EMBO J. 17, 6527-6540.

10.  Qu, J. et al. (2001) Mol. Cell. Biol. 21, 3523-3533.


Entrez-Gene Id 5058
Swiss-Prot Acc. Q13153


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.