Upstream / Downstream

Explore pathways related to this product.

Antibody Guarantee

CST Antibody Performance Guarantee

LEARN MORE  

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

REACTIVITY SENSITIVITY MW (kDa) Isotype
H Endogenous 150: alpha9, 130: beta1 Mouse IgG1
Image

Immunoprecipitation

Immunoprecipitation of α9/β1 integrin from CHO cells transfected with human α9 integrin. Endogenous β1 integrin was detected by western blot using Integrin β1 Antibody #4706.

Learn more about how we get our images
Image
Image
Image

Flow Cytometry

Flow cytometric analysis of CHO cells, untransfected (blue) or transfected with human α9 integrin (green), using Integrin α9β1 (Y9A2) Mouse mAb compared to a nonspecific negative control antibody (red).

Learn more about how we get our images
Image
Image
Page

Immunoprecipitation for Native Proteins

This protocol is intended for immunoprecipitation of native proteins for analysis by western immunoblot or kinase activity.

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 20X Phosphate Buffered Saline (PBS): (#9808) To prepare 1 L of 1X PBS, add 50 ml 20X PBS to 950 ml dH2O, mix.
  2. 10X Cell Lysis Buffer: (#9803) To prepare 10 ml of 1X cell lysis buffer, add 1 ml cell lysis buffer to 9 ml dH2O, mix.

    NOTE: Add 1 mM PMSF (#8553) immediately prior to use.

  3. 3X SDS Sample Buffer: Blue Loading Pack (#7722) or Red Loading Pack (#7723) Prepare fresh 3X reducing loading buffer by adding 1/10 volume 30X DTT to 1 volume of 3X SDS loading buffer.
  4. Protein G Magnetic Beads: Use Protein G (#8740) for mouse IgG immunoprecipitation.
  5. 6-Tube Magnetic Separation Rack: (#7017).
  6. 10X Kinase Buffer (for kinase assays): (#9802) To Prepare 1 ml of 1X kinase buffer, add 100 µl 10X kinase buffer to 900 µl dH2O, mix.
  7. ATP (10 mM) (for kinase assays): (#9804) To prepare 0.5 ml of ATP (200 µM), add 10 µl ATP (10 mM) to 490 µl 1X kinase buffer.

B. Preparing Cell Lysates

  1. Aspirate media. Treat cells by adding fresh media containing regulator for desired time.
  2. To harvest cells under nondenaturing conditions, remove media and rinse cells once with ice-cold 1X PBS.
  3. Remove PBS and add 0.5 ml ice-cold 1X cell lysis buffer to each plate (10 cm) and incubate on ice for 5 min.
  4. Scrape cells off the plate and transfer to microcentrifuge tubes. Keep on ice.
  5. Sonicate on ice three times for 5 sec each.
  6. Microcentrifuge for 10 min at 4°C, 14,000 x g and transfer the supernatant to a new tube. The supernatant is the cell lysate. If necessary, lysate can be stored at -80°C.

C. Immunoprecipitation

Cell Lysate Pre-Clearing (Optional)

  1. Vortex to mix beads
  2. Add 10–30 µl of 50% Protein G magnetic bead slurry to 200 µl cell lysate at 1 mg/ml.
  3. Incubate with rotation at 4°C for 30–60 min.
  4. Pellet beads using magnetic separation rack. Transfer the supernatant to a fresh tube.
  5. Proceed to immunoprecipitation below.

Immunoprecipitation

  1. Add primary antibody (at the appropriate dilution as recommended in the product datasheet) to 200 µl cell lysate at 1 mg/ml. Incubate with rotation overnight at 4°C.
  2. Add protein G magnetic beads (10–30 µl of 50% bead slurry). Incubate with rotation for 10–30 min at 4°C.
  3. Pellet beads using magnetic separation rack. Wash pellet five times with 500 µl of 1X cell lysis buffer. Keep on ice between washes.
  4. Proceed to analyze by western immunoblotting or kinase activity (section D).

D. Sample Analysis

Proceed to one of the following specific set of steps.

For Analysis by Western Immunoblotting

  1. Resuspend the pellet with 20 µl 3X SDS sample buffer. Vortex, then microcentrifuge for 30 sec at 14,000 x g.
  2. Heat the sample to 95–100°C for 2-5 min and microcentrifuge for 1 min at 14,000 x g.
  3. Load the sample (15–30 µl) on a 4–20% gel for SDS-PAGE.
  4. Analyze sample by western blot (see Western Immunoblotting Protocol).

For Analysis by Kinase Assay

  1. Wash pellet twice with 500 µl 1X kinase buffer. Keep on ice.
  2. Suspend pellet in 40 µl 1X kinase buffer supplemented with 200 µM ATP and appropriate substrate.
  3. Incubate for 30 min at 30°C.
  4. Terminate reaction with 20 µl 3X SDS sample buffer. Vortex, then microcentrifuge for 30 sec.
  5. Transfer supernatant containing phosphorylated substrate to another tube.
  6. Heat the sample to 95–100°C for 2–5 min and microcentrifuge for 1 min at 14,000 x g.
  7. Load the sample (15–30 µl) on SDS-PAGE (4–20%).

posted December 2008

revised November 2013

protocol id: 121

Page

Flow Cytometry General Protocol

If using whole blood, please follow the Flow Cytometry Whole Blood Protocol.

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 20X Phosphate Buffered Saline (PBS): (#9808) To prepare 1 L 1X PBS: add 50 ml 20X PBS to 950 ml dH2O, mix.
  2. 16% Formaldehyde (methanol free).
  3. 100% methanol.
  4. Incubation Buffer: Dissolve 0.5 g Bovine Serum Albumin (BSA) (#9998) in 100 ml 1X PBS. Store at 4°C.
  5. Recommended Anti-Mouse secondary antibodies::

B. Fixation

  1. Collect cells by centrifugation and aspirate supernatant.
  2. Resuspend cells in 0.5–1 ml 1X PBS. Add formaldehyde to obtain a final concentration of 4%.
  3. Fix for 10 min at 37°C.
  4. Chill tubes on ice for 1 min.
  5. For extracellular staining with antibodies that do not require permeabilization, proceed to immunostaining (Section D) or store cells in PBS with 0.1% sodium azide at 4°C; for intracellular staining, proceed to permeabilization (Section C).

C. Permeabilization

NOTE: This step is critical for many CST antibodies.

  1. Permeabilize cells by adding ice-cold 100% methanol slowly to pre-chilled cells, while gently vortexing, to a final concentration of 90% methanol. Alternatively, remove fix prior to permeabilization by centrifugation and resuspend in 90% methanol as described above.
  2. Incubate 30 min on ice.
  3. Proceed with immunostaining (Section D) or store cells at -20°C in 90% methanol.

D. Immunostaining

NOTE: Account for isotype matched controls for monoclonal antibodies or species matched IgG for polyclonal antibodies. Count cells using a hemocytometer or alternative method.

  1. Aliquot 0.5–1 x 106 cells into each assay tube (by volume).
  2. Add 2–3 ml incubation buffer to each tube and wash by centrifugation. Repeat.
  3. Resuspend cells in 100 μl of diluted primary antibody (prepared in incubation buffer at the recommended dilution).
  4. Incubate for 1 hr at room temperature.
  5. Wash by centrifugation in 2–3 ml incubation buffer.
  6. Resuspend cells in fluorochrome-conjugated secondary antibody, diluted in incubation buffer at the recommended dilution.
  7. Incubate for 30 min at room temperature.
  8. Wash by centrifugation in 2–3 ml incubation buffer.
  9. Resuspend cells in 0.5 ml PBS and analyze on flow cytometer; alternatively, for DNA staining, proceed to optional DNA stain (Section E).

E. Optional DNA Dye

  1. Resuspend cells in 0.5 ml of DNA dye (e.g. Propidium Iodide (PI)/RNase Staining Solution #4087).
  2. Incubate for at least 30 min at room temperature.
  3. Analyze cells in DNA staining solution on flow cytometer.

posted June 2005

Flow Cytometry Whole Blood Protocol

If using cell lines, please follow the Flow Cytometry General Protocol.

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 20X Phosphate Buffered Saline (PBS): (#9808) To prepare 1 L 1X PBS: add 50 ml 20X PBS to 950 ml dH2O, mix.
  2. 16% Formaldehyde (methanol free).
  3. Triton™ X-100: To prepare 50 ml of 0.1% Triton™ X-100 add 50 μl Triton™ X-100 to 50 ml 1 X PBS and mix well.
  4. 50% methanol.
  5. Incubation Buffer: Dissolve 0.5 g Bovine Serum Albumin (BSA) (#9998) in 100 ml 1X PBS. Store at 4°C.
  6. Secondary Antibodies:

B. Preparation of Whole Blood (fixation, lysis, and permeabilization) for Immunostaining

  1. Aliquot 100 μl fresh whole blood per assay tube.
  2. OPTIONAL: Place tubes in rack in 37°C water bath for short-term treatments with ligands, inhibitors, drugs, etc.
  3. Add 65 μl of 10% formaldehyde to each tube.
  4. Vortex briefly and let stand for 15 min at room temperature.
  5. Add 1 ml of 0.1% Triton™ X-100 to each tube.
  6. Vortex and let stand for 30 min at room temperature.
  7. Add 1 ml incubation buffer.
  8. Pellet cells by centrifugation and aspirate supernatant.
  9. Repeat steps 7 and 8.
  10. Resuspend cells in ice-cold 50% methanol in PBS (store methanol solution at -20°C until use).
  11. Incubate at least 10 min on ice.
  12. Proceed with staining or store cells at -20°C in 50% methanol.

C. Staining Using Unlabeled Primary and Conjugated Secondary Antibodies

NOTE: Account for isotype-matched controls for monoclonal antibodies or species matched IgG for polyclonal antibodies.

  1. Add 2–3 ml incubation buffer to each tube and rinse by centrifugation. Repeat.
  2. Add primary antibodies diluted as recommended on datasheet or product webpage in incubation buffer.
  3. Incubate for 30–60 min at room temperature.
  4. Wash by centrifugation in 2–3 ml incubation buffer.
  5. Resuspend cells in fluorochrome-conjugated secondary antibody diluted in incubation buffer according to the manufacturer’s recommendations.
  6. Incubate for 30 min at room temperature.
  7. Wash by centrifugation in 2–3 ml incubation buffer.
  8. Resuspend cells in 0.5 ml PBS and analyze on flow cytometer.

Reference: Chow S, Hedley D, Grom P, Magari R, Jacobberger JW, Shankey TV (2005) Whole blood fixation and permeabilization protocol with red blood cell lysis for flow cytometry of intracellular phosphorylated epitopes in leukocyte subpopulations. Cytometry A 67(1), 4–17.

posted November 2008

revised September 2013

protocol id: 406

Product Usage Information

Application Dilutions
Immunoprecipitation 1:50
Flow Cytometry 1:400

Storage: Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Specificity / Sensitivity

Integrin α9β1 (Y9A2) Mouse mAb detects endogenous levels of total α9/β1 integrin heterodimer.


Species Reactivity: Human

Source / Purification

Monoclonal antibody is produced by immunizing animals with murine L cells transfected with human α9 integrin protein.

Integrins are transmembrane glycoproteins that form heterodimers consisting of one α and one β subunit. The dimers act as receptors for extracellular matrix (ECM) proteins at sites of cell adhesion, and interact with focal adhesion (FA) proteins on the cytosolic side, forming the connection between the ECM and the actin cytoskeleton. Signaling to and from integrins regulates cell adhesion, motility, proliferation, apoptosis and gene expression, impacting cellular processes such as development, wound healing, immune response, invasion, metastasis and angiogenesis (reviewed in 1,2). α9β1 integrin is expressed in epithelial cells, smooth and skeletal muscle, neutrophils and hepatocytes (3). Its ligands include the ECM protein tenascin (4) and vascular cell adhesion molecule-1 (VCAM-1) (5). The cytoplasmic domain of α9 integrin binds the focal adhesion adaptor protein, paxillin, inhibiting cell spreading (6,7). Binding of the α9 cytoplasmic domain to spermidine/spermine N(1)-acetyltransferase (SSAT) mediates α9/β1 enhancement of cell migration (8). Physiological functions include development of the lymphatic system (9), possibly through binding to the lymphatic vascular endothelial growth factors VEGF-C and -D (10), neutrophil migration (5), and myogenic differentiation (11).


1.  Calderwood, D.A. et al. (2000) J Biol Chem 275, 22607-10.

2.  ffrench-Constant, C. and Colognato, H. (2004) Trends Cell Biol 14, 678-86.

3.  Palmer, E.L. et al. (1993) J. Cell Biol. 123, 1289-1297.

4.  Yokosaki, Y. et al. (1994) J. Biol. Chem. 269, 26691-26696.

5.  Taooka, Y. et al. (1999) J. Cell Biol. 145, 413-420.

6.  Young, B.A. et al. (2001) Mol. Biol. Cell 12, 3214-3225.

7.  Liu, S. et al. (2001) J. Biol. Chem. 276, 37086-37092.

8.  Chen, C. et al. (2004) J. Cell Biol. 167, 161-170.

9.  Huang, X.Z. et al. (2000) Mol. Cell Biol. 20, 5208-5215.

10.  Vlahakis, N.E. et al. (2005) J. Biol. Chem. 280, 4544-4552.

11.  Lafuste, P. et al. (2005) Mol. Biol. Cell 16, 861-870.


Entrez-Gene Id 3688, 3680
Swiss-Prot Acc. P05556, Q13797


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.