Upstream / Downstream

Explore pathways related to this product.

Our U.S. Offices Will Be Closing Early

Our U.S. offices will be closing early on November 26th at 6:00 PM EST.

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

REACTIVITY SENSITIVITY MW (kDa) Isotype
H M Mk Endogenous 62 Mouse IgG1

Western Blotting

Western blot analysis of extracts from various cell lines using KLHL12 (2G2) Mouse mAb.

Learn more about how we get our images

Western Blotting

Western blot analysis of extracts from 293T cells, mock transfected (-) or transfected with a construct expressing Myc/DDK-tagged full-length human KLHL12 (hKLHL12-Myc/DDK; +), using KLHL12 (2G2) Mouse mAb.

Learn more about how we get our images
Image
Image
Image
Image
Image
Image
Page

Western Blotting Protocol

For western blots, incubate membrane with diluted primary antibody in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween® 20 at 4°C with gentle shaking, overnight.

NOTE: Please refer to primary antibody datasheet or product webpage for recommended antibody dilution.

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalent grade water.

  1. 20X Phosphate Buffered Saline (PBS): (#9808) To prepare 1 L 1X PBS: add 50 ml 20X PBS to 950 ml dH2O, mix.
  2. 10X Tris Buffered Saline (TBS): (#12498) To prepare 1 L 1X TBS: add 100 ml 10X to 900 ml dH2O, mix.
  3. 1X SDS Sample Buffer: Blue Loading Pack (#7722) or Red Loading Pack (#7723) Prepare fresh 3X reducing loading buffer by adding 1/10 volume 30X DTT to 1 volume of 3X SDS loading buffer. Dilute to 1X with dH2O.
  4. 10X Tris-Glycine SDS Running Buffer: (#4050) To prepare 1 L 1X running buffer: add 100 ml 10X running buffer to 900 ml dH2O, mix.
  5. 10X Tris-Glycine Transfer Buffer: (#12539) To prepare 1 L 1X Transfer Buffer: add 100 ml 10X Transfer Buffer to 200 ml methanol + 700 ml dH2O, mix.
  6. 10X Tris Buffered Saline with Tween® 20 (TBST): (#9997) To prepare 1 L 1X TBST: add 100 ml 10X TBST to 900 ml dH2O, mix.
  7. Nonfat Dry Milk: (#9999).
  8. Blocking Buffer: 1X TBST with 5% w/v nonfat dry milk; for 150 ml, add 7.5 g nonfat dry milk to 150 ml 1X TBST and mix well.
  9. Wash Buffer: (#9997) 1X TBST.
  10. Primary Antibody Dilution Buffer: 1X TBST with 5% nonfat dry milk; for 20 ml, add 1.0 g nonfat dry milk to 20 ml 1X TBST and mix well.
  11. Biotinylated Protein Ladder Detection Pack: (#7727).
  12. Prestained Protein Marker, Broad Range (Premixed Format): (#7720).
  13. Blotting Membrane and Paper: (#12369) This protocol has been optimized for nitrocellulose membranes. Pore size 0.2 µm is generally recommended.
  14. Secondary Antibody Conjugated to HRP: Anti-mouse IgG, HRP-linked Antibody (#7076).
  15. Detection Reagent: SignalFire™ ECL Reagent (#6883).

B. Protein Blotting

A general protocol for sample preparation.

  1. Treat cells by adding fresh media containing regulator for desired time.
  2. Aspirate media from cultures; wash cells with 1X PBS; aspirate.
  3. Lyse cells by adding 1X SDS sample buffer (100 µl per well of 6-well plate or 500 µl for a 10 cm diameter plate). Immediately scrape the cells off the plate and transfer the extract to a microcentrifuge tube. Keep on ice.
  4. Sonicate for 10–15 sec to complete cell lysis and shear DNA (to reduce sample viscosity).
  5. Heat a 20 µl sample to 95–100°C for 5 min; cool on ice.
  6. Microcentrifuge for 5 min.
  7. Load 20 µl onto SDS-PAGE gel (10 cm x 10 cm).

    NOTE: Loading of prestained molecular weight markers (#7720, 10 µl/lane) to verify electrotransfer and biotinylated protein ladder (#7727, 10 µl/lane) to determine molecular weights are recommended.

  8. Electrotransfer to nitrocellulose membrane (#12369).

C. Membrane Blocking and Antibody Incubations

NOTE: Volumes are for 10 cm x 10 cm (100 cm2) of membrane; for different sized membranes, adjust volumes accordingly.

I. Membrane Blocking

  1. (Optional) After transfer, wash nitrocellulose membrane with 25 ml TBS for 5 min at room temperature.
  2. Incubate membrane in 25 ml of blocking buffer for 1 hr at room temperature.
  3. Wash three times for 5 min each with 15 ml of TBST.

II. Primary Antibody Incubation

  1. Incubate membrane and primary antibody (at the appropriate dilution and diluent as recommended in the product datasheet) in 10 ml primary antibody dilution buffer with gentle agitation overnight at 4°C.
  2. Wash three times for 5 min each with 15 ml of TBST.
  3. Incubate membrane with Anti-mouse IgG, HRP-linked Antibody (#7076 at 1:2000) and Anti-biotin, HRP-linked Antibody (#7075 at 1:1000–1:3000) to detect biotinylated protein markers in 10 ml of blocking buffer with gentle agitation for 1 hr at room temperature.
  4. Wash three times for 5 min each with 15 ml of TBST.
  5. Proceed with detection (Section D).

D. Detection of Proteins

Directions for Use:

  1. Wash membrane-bound HRP (antibody conjugate) three times for 5 minutes in TBST.
  2. Prepare 1X SignalFire™ ECL Reagent (#6883) by diluting one part 2X Reagent A and one part 2X Reagent B (e.g. for 10 ml, add 5 ml Reagent A and 5 ml Reagent B). Mix well.
  3. Incubate substrate with membrane for 1 minute, remove excess solution (membrane remains wet), wrap in plastic and expose to X-ray film.

* Avoid repeated exposure to skin.

posted June 2005

revised November 2013

protocol id: 19

Western Blot Reprobing Protocol

Reprobing of an existing membrane is a convenient means to immunoblot for multiple proteins independently when only a limited amount of sample is available. It should be noted that for the best possible results a fresh blot is always recommended. Reprobing can be a valuable method but with each reprobing of a blot there is potential for increased background signal. Additionally, it is recommended that you verify the removal of the first antibody complex prior to reprobing so that signal attributed to binding of the new antibody is not leftover signal from the first immunoblotting experiment. This can be done by re-exposing the blot to ECL reagents and making sure there is no signal prior to adding the next primary antibody.

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalently purified water.

  1. Wash Buffer: Tris Buffered Saline with Tween® 20 (TBST-10X) (#9997)
  2. Stripping Buffer: To prepare 100 ml, mix 0.76 g Tris base, 2 g SDS and 700 μl β-mercaptoethanol. Bring to 100 ml with deionized H2O. Adjust pH to 6.8 with HCl.

B. Protocol

  1. After film exposure, wash membrane four times for 5 min each in TBST. Best results are obtained if the membrane is not allowed to dry.
  2. Incubate membrane for 30 min at 50°C in stripping buffer (with slight agitation).
  3. Wash membrane six times for 5 min each in TBST.
  4. (Optional) To assure that the original signal is removed, wash membrane twice for 5 min each with 10 ml of TBST. Incubate membrane with LumiGLO® with gentle agitation for 1 min at room temperature. Drain membrane of excess developing solution. Do not let dry. Wrap in plastic wrap and expose to x-ray film.
  5. Wash membrane again four times for 5 min each in TBST.
  6. The membrane is now ready to reuse. Start detection at the "Membrane Blocking and Antibody Incubations" step in the Western Immunoblotting Protocol.

posted June 2005

Product Usage Information

Application Dilutions
Western Blotting 1:1000

Storage: Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Specificity / Sensitivity

KLHL12 (2G2) Mouse mAb recognizes endogenous levels of total KLHL12 protein.


Species Reactivity: Human, Mouse, Monkey

Source / Purification

Monoclonal antibody is produced by immunizing animals with a recombinant protein specific to the carboxy terminus of human KLHL12 protein.

Cullins are proteins that function as molecular scaffolds for modular ubiquitin ligases typified by the SCF (Skp1-CUL1-F-box) complex (1-3). The substrate selectivity of these E3 ligases is dictated by a specificity module that binds cullins. In the SCF complex, this module is composed of Skp1, which binds directly to CUL1, and a member of the F-box family of proteins such as Skp2 (1-4). CUL3 has been shown to be required for embryonic development in mammals and Caenorhabditis elegans (5-7) but until recently, its substrate specificity adaptor had yet to be elucidated. It is now recognized that substrate adaptors for CUL3-based ubiquitin ligase complexes contain a conserved BTB/POZ (Pox virus and Zinc finger) domain. This domain, which was initially identified in the Drosophila transcriptional repressors broad complex, tramtrack, and bric-a-brac is present in more than 190 human proteins. BTB proteins contain a variety of putative protein-protein interaction domains, including MATH domains, zinc finger repeats, and kelch repeats (8).

There are several lines of evidence suggesting that Kelch-like 12 protein (KLHL12) is a substrate-specific adaptor for the CUL3-based ubiquitin ligase complex. Analysis of the amino acid sequence of KLHL12 reveals an amino-terminal BTB motif, a central linker region, and a carboxy-terminal kelch domain composed of kelch repeats. Furthermore, KLHL12 has been shown to negatively regulate Wnt signaling by binding Disheveled and targeting it for ubiquitin-dependent proteasomal degradation (9). More recently, KLHL12 was shown to drive the assembly of large COPII vesicles by promoting the monoubiquitination of the COPII component Sec31. As a result, CUL3-KLHL12-dependent ubiquitination is essential for collagen export, a step that is required for integrin-dependent mouse embryonic stem cell division (10).


1.  Skowyra, D. et al. (1997) Cell 91, 209-19.

2.  Feldman, R.M. et al. (1997) Cell 91, 221-30.

3.  Bai, C. et al. (1996) Cell 86, 263-74.

4.  Singer, J.D. et al. (1999) Genes Dev 13, 2375-87.

5.  Zheng, N. et al. (2002) Nature 416, 703-9.

6.  Winston, J.T. et al. (1999) Genes Dev 13, 2751-7.

7.  Kurz, T. et al. (2002) Science 295, 1294-8.

8.  Collins, T. et al. (2001) Mol Cell Biol 21, 3609-15.

9.  Angers, S. et al. (2006) Nat Cell Biol 8, 348-57.

10.  Jin, L. et al. (2012) Nature 482, 495-500.


Entrez-Gene Id 59349
Swiss-Prot Acc. Q53G59


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.