Upstream / Downstream

Explore pathways related to this product.

Our U.S. Offices Are Closed

Our U.S. offices are closed in observance of Labor Day. We will reopen on Tuesday, September 2nd.

Thank you for your patience.


Find answers on our FAQs page.


Visit PhosphoSitePlus®

PTM information and tools available.


Product Includes Quantity Applications Reactivity MW(kDa) Isotype
Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb 4060 40 µl
H M R Hm Mk Dm Z B 60 Rabbit IgG
Phospho-p70 S6 Kinase (Thr389) (108D2) Rabbit mAb 9234 40 µl
H M R Mk 70, 85 Rabbit IgG
Phospho-S6 Ribosomal Protein (Ser235/236) (D57.2.2E) XP® Rabbit mAb 4858 40 µl
H M R Mk Mi Sc 32 Rabbit IgG
Phospho-eIF2α (Ser51) (D9G8) XP® Rabbit mAb 3398 40 µl
H M R Mk Dm 38 Rabbit IgG
Phospho-4E-BP1 (Thr37/46) (236B4) Rabbit mAb 2855 40 µl
H M R Mk Dm 15 to 20 Rabbit IgG
Phospho-eIF4E (Ser209) Antibody 9741 40 µl
H M R Mk 25 Rabbit 
Rapamycin 9904 2 µg
LY294002 9901 0.3 mg
Anti-rabbit IgG, HRP-linked Antibody 7074 100 µl
All Goat 

Product Description

The Translational Control Antibody Sampler Kit provides a fast and economical means of evaluating multiple proteins involved in translational control. The kit contains enough primary and secondary antibody to perform four Western blot experiments, as well as specific inhibitors of PI3 kinase and mTOR/FRAP.

Specificity / Sensitivity

Each phospho-specific antibody in the Translational Control Antibody Sampler Kit detects the intended target only when phosphorylated at the indicated site. Phospho-4E-BP1 (Thr37/46) (236B4) Rabbit mAb may cross-react with 4E-BP2 and 4E-BP3 when phosphorylated at equivalent sites.

Source / Purification

Phospho-specific polyclonal antibodies are produced by immunizing animals with synthetic phosphopeptides corresponding to residues surrounding Ser209 of human elF4E. Polyclonal antibodies are purified by protein A and peptide affinity chromatography. Phospho-specific rabbit monoclonal antibodies are produced by immunizing animals with synthetic phosphopeptides corresponding to residues surrounding Ser473 of mouse Akt, Thr37 and Thr46 of mouse 4E-BP1, Ser51 of human eIF2α, Ser235 and Ser236 of human ribosomal protein S6, and Thr389 of human p70 S6 kinase.

Key steps in translational control occur at the level of eukaryotic initiation factor 4F (eIF4F) and p70 S6 kinase regulation. eIF4F is a complex whose functions include the recognition of the mRNA 5' cap structure. Several stimuli, such as insulin and various growth and survival factors, regulate the eIF4F complex and p70 S6 kinase primarily by triggering a signaling cascade dependent on sequential activation of PI3K, Akt/PKB and mTOR/FRAP kinases. Akt is activated by phosphorylation within the C-terminus at Ser473 and within the activation loop at Thr308 by phospholipid-dependent kinases. Inactivation in vivo of PI3K by the highly selective inhibitor LY294002 inhibits Akt and downstream elements of this cascade. Direct phosphorylation of mTOR/FRAP at Ser2448 by Akt is a key regulatory event controlling its kinase activity. mTOR/FRAP activity can be effectively blocked by Rapamycin, leading to inactivation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1), an inhibitor of translation initiation, and activation of p70 S6 kinases. Inactivation of 4E-BP1 by sequential phosphorylation causes the release of eIF4E, which, together with eIF4G and other factors, forms a functional eIF4F cap binding complex. p70 S6 kinases phosphorylates the 40S ribosomal subunit protein S6 and stimulates the translation of 5' oligopyrimidine tract containing mRNAs. The Erk pathway is also involved in regulation at this level by regulating the eIF4E kinase, Mnk1, and activating p70 S6 kinase. Tuberin, a product of the tumor supressor gene TSG2, is directly phosphorylated atThr1462 by Akt/PKB. Tuberin inhibits the mammalian target of rapamycin, mTOR, which results in inhibition of p70 S6 kinase and activation of 4E-BP1 and, therefore, inhibition of translation.

1.  Gingras, A. et al. (1999) Annu. Rev. Biochem. 68, 913-963.

2.  Dennis, P. B. et al. (1999) Curr. Opin. Genet. Dev. 9, 49-54.

3.  Volarevic, S. and Thomas, G. (2000) Prog. Nucleic Acid Res. Mol. Biol. 65, 101-127.

4.  Pyronnet, S. et al. (2000) Biochem. Pharmacol. 60, 1237-1243.

5.  Gingras, A.C. et al. (2001) Genes Dev. 15, 807-826.

6.  Dever, T.E. (2002) Cell 108, 545-556.

7.  Goncharova, E. et al. (2002) J. Biol. Chem. 277, 30958-30967.

Entrez-Gene Id 207, 208, 10000, 1965, 1977, 6198, 6194, 1978
Swiss-Prot Acc. P31749, P31751, Q9Y243, P05198, P06730, P23443, P62753, Q13541

Protein Specific References

Germack R and Dickenson JM (2000) Br J Pharmacol 130, 867–74

Wick MJ et al. (2000) J Biol Chem 275, 40400–6

Rane MJ et al. (2001) J Biol Chem 276, 3517–23

Guizzetti M and Costa LG (2001) Neuroreport 12, 1639–42

Brognard J et al. (2001) Cancer Res 61, 3986–97

Maira SM et al. (2001) Science 294, 374–80

Schönherr E et al. (2001) J Biol Chem 276, 40687–92

Hill MM et al. (2001) J Biol Chem 276, 25643–6

Dhawan P et al. (2002) Cancer Res 62, 7335–42

Conus NM et al. (2002) J Biol Chem 277, 38021–8

Sano H et al. (2002) J Biol Chem 277, 19439–47

Egawa K et al. (2002) J Biol Chem 277, 38863–9

Kisseleva MV et al. (2002) J Biol Chem 277, 6266–72

Barry FA and Gibbins JM (2002) J Biol Chem 277, 12874–8

Ikonomov OC et al. (2002) Endocrinology 143, 4742–54

Rani MR et al. (2002) J Biol Chem 277, 38456–61

Ho R et al. (2002) Cancer Res 62, 6462–6

Wan X and Helman LJ (2003) Oncogene 22, 8205–11

Fukuda T et al. (2003) J Biol Chem 278, 51324–33

Kim HH et al. (2003) FASEB J 17, 2163–5

Min YH et al. (2004) Cancer Res 64, 5225–31

Tazzari PL et al. (2004) Br J Haematol 126, 675–81

Matsuzaki H et al. (2004) Biochemistry 43, 4284–93

Wolfrum S et al. (2004) Arterioscler Thromb Vasc Biol 24, 1842–7

Kaneko Y et al. (2004) J Cell Sci 117, 407–15

Esfandiarei M et al. (2004) J Virol 78, 4289–98

Baudhuin LM et al. (2004) FASEB J 18, 341–3

Dietze EC et al. (2004) Oncogene 23, 3851–62

Wu T et al. (2004) Mol Cancer Ther 3, 299–307

Honjo S et al. (2005) DNA Cell Biol 24, 141–7

Karlsson HK et al. (2005) Diabetes 54, 1459–67

Viniegra JG et al. (2005) J Biol Chem 280, 4029–36

Le XF et al. (2005) J Biol Chem 280, 2092–104

Smith E and Frenkel B (2005) J Biol Chem 280, 2388–94

Edwards LA et al. (2005) Oncogene 24, 3596–605

Karlsson HK et al. (2005) Diabetes 54, 1692–7

Kippenberger S et al. (2005) J Biol Chem 280, 3060–7

Jung HS et al. (2005) Mol Endocrinol 19, 2748–59

Khundmiri SJ et al. (2006) Am J Physiol Cell Physiol 291, C1247–57

Hers I and (2007) Blood 110, 4243–52

Ananthanarayanan B et al. (2007) J Biol Chem 282, 36634–41

Zunder ER et al. (2008) Cancer Cell 14, 180–92

Grenegård M et al. (2008) J Biol Chem 283, 18493–504

Abubaker J et al. (2009) Mol Cancer 8, 51

Chen PL and Easton AS (2011) Curr Neurovasc Res 8, 14–24

Van Aller GS et al. (2011) Biochem Biophys Res Commun 406, 194–9

Uesugi A et al. (2011) Cancer Res 71, 5765–78

Ou YH et al. (2011) Mol Cell 41, 458–70

Wang S et al. (2012) PLoS One 7, e37427

Glidden EJ et al. (2012) J Biol Chem 287, 581–8

Shih MC et al. (2012) Oncogene 31, 2389–400

Misra UK and Pizzo SV (2012) J Cell Biochem 113, 1488–500

Johnson AL et al. (2001) Biol Reprod 64, 1566–74

Zhang M and Riedel H (2009) J Cell Biochem 107, 65–75

Kazemi S et al. (2004) Mol Cell Biol 24, 3415–29

McEwen E et al. (2005) J Biol Chem 280, 16925–33

Fritsch RM et al. (2007) J Biol Chem 282, 22551–62

Ramya TN et al. (2007) Biochem J 401, 411–20

Shen S et al. (2011) Oncogene 30, 4544–56

Zhang Y et al. (2001) J Biol Chem 276, 20913–23

Romanelli A et al. (2002) J Biol Chem 277, 40281–9

Saitoh M et al. (2002) J Biol Chem 277, 20104–12

Shi Y et al. (2002) J Biol Chem 277, 15712–20

Lehman JA et al. (2003) J Biol Chem 278, 28130–8

Le XF et al. (2003) Oncogene 22, 484–97

Gomez-Cambronero J and (2003) FEBS Lett 550, 94–100

Cammalleri M et al. (2003) Proc Natl Acad Sci U S A 100, 14368–73

Qiu Q et al. (2004) Mol Hum Reprod 10, 677–84

Strömberg T et al. (2004) Blood 103, 3138–47

Lisse TS et al. (2011) FASEB J 25, 937–47

Ali, S.M. and Sabatini, D.M. (2005) J Biol Chem 280, 19445-8.

Jung, C.H. et al. (2009) Mol Biol Cell 20, 1992-2003.

Herbert TP et al. (2002) J Biol Chem 277, 11591–6

Wang X et al. (2003) Mol Cell Biol 23, 1546–57

For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.
U.S. Patent No. 5,675,063.