Upstream / Downstream

pathwayImage

Explore pathways related to this product.

Antibody Guarantee

CST Antibody Performance Guarantee

LEARN MORE  

To get local purchase information on this product, click here

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

Product Includes Quantity Applications Reactivity MW(kDa) Isotype
Estrogen Receptor α (D8H8) Rabbit mAb 8644 40 µl
Western Blotting Immunoprecipitation Immunofluorescence Chromatin Immunoprecipitation
H 66 Rabbit IgG
Phospho-Estrogen Receptor α (Ser104/106) Antibody 2517 40 µl
Western Blotting
H 66 Rabbit 
Phospho-Estrogen Receptor α (Ser118) (16J4) Mouse mAb 2511 40 µl
Western Blotting Immunohistochemistry
H 66 Mouse IgG2b
Phospho-Estrogen Receptor α (Ser167) (D1A3) Rabbit mAb 5587 40 µl
Western Blotting
H 66 Rabbit IgG
Anti-rabbit IgG, HRP-linked Antibody 7074 100 µl
Western Blotting
All Goat 
Anti-mouse IgG, HRP-linked Antibody 7076 100 µl
Western Blotting
All Horse 

Product Description

The Phospho-Estrogen Receptor α Antibody Sampler Kit provides an economical means to evaluate the activation status of ERα, including phosphorylation of Ser104/106, Ser167, and Ser118. The monoclonal control ERα antibody is also included to detect total Estrogen Receptor α levels. The kit contains enough primary antibody to perform four Western blot experiments.


Specificity / Sensitivity

Phospho-Estrogen Receptor α (Ser167) (D1A3) Rabbit mAb detects endogeneous levels of ERα protein only when phosphorylated at Ser167, and also cross reacts with a nonspecific band around 77 kDa. Phospho-Estrogen Receptor α (Ser104/106) Antibody detects endogenous levels of Ser104/106 phosphorylated ERα. Phospho-Estrogen Receptor α (Ser118) (16J4) Mouse mAb will detect endogenous levels of Ser118 phosphorylated ERα. Estrogen Receptor α (D8H8) Rabbit mAb detects endogenous levels of ERα. Each antibody in the kit does not cross-react with phosphorylated or nonphosphorylated ER isoforms β or other related family members.


Source / Purification

Activation state monoclonal antibodies are produced by immunizing animals with synthetic phosphopeptides or non-phosphopeptide corresponding to residues surrounding Ser167, Ser118, and the carboxy terminus of human estrogen receptor α protein. Activation state polyclonal antibody is produced by immunizing animals with synthetic phosphopeptides corresponding to residues surrounding Ser104/106 of human ERα. Polyclonal antibodies are purified by protein A and peptide affinity chromatography.

Estrogen receptor α (ERα), a member of the steroid receptor superfamily, contains highly conserved DNA binding and ligand binding domains (1). Through its estrogen-independent and estrogen-dependent activation domains (AF-1 and AF-2, respectively), ERα regulates transcription by recruiting coactivator proteins and interacting with general transcriptional machinery (2). Phosphorylation at multiple sites provides an important mechanism to regulate ERα activity (3-5). Ser104, 106, 118, and 167 are located in the amino-terminal transcription activation function domain AF-1, and phosphorylation of these serine residues plays an important role in regulating ERα activity. Ser118 may be the substrate of the transcription regulatory kinase CDK7 (5). Ser167 may be phosphorylated by p90RSK and Akt (4,6). According to the research literature, phosphorylation at Ser167 may confer tamoxifen resistance in breast cancer patients (4).


1.  Mangelsdorf, D.J. et al. (1995) Cell 83, 835-9.

2.  Glass, C.K. and Rosenfeld, M.G. (2000) Genes Dev 14, 121-41.

3.  Chen, D. et al. (1999) Mol Cell Biol 19, 1002-15.

4.  Campbell, R.A. et al. (2001) J Biol Chem 276, 9817-24.

5.  Chen, D. et al. (2000) Mol Cell 6, 127-37.

6.  Joel, P.B. et al. (1998) Mol Cell Biol 18, 1978-84.


Entrez-Gene Id 2099
Swiss-Prot Acc. P03372

Protein Specific References

Métivier R et al. (2002) EMBO J 21, 3443–53

Dutertre M and Smith CL (2003) Mol Endocrinol 17, 1296–314

Lu Q et al. (2003) J Biol Chem 278, 4639–45

Cui Y et al. (2004) Cancer Res 64, 9199–208

Murphy L et al. (2004) Clin Cancer Res 10, 1354–9

Murphy LC et al. (2004) Clin Cancer Res 10, 5902–6

Staka CM et al. (2005) Endocr Relat Cancer 12 Suppl 1, S85–97

Chen J et al. (2005) Blood 106, 328–37

Medunjanin S et al. (2005) J Biol Chem 280, 33006–14

Yamashita H et al. (2005) Breast Cancer Res 7, R753–64

Gburcik V et al. (2005) Mol Cell Biol 25, 3421–30

Shah YM and Rowan BG (2005) Mol Endocrinol 19, 732–48

Kim MY et al. (2006) Mol Endocrinol 20, 1479–93

Kuske B et al. (2006) Endocr Relat Cancer 13, 1121–33

Sekine Y et al. (2007) Oncogene 26, 6038–49

Britton DJ et al. (2008) J Am Soc Mass Spectrom 19, 729–40

Thomas RS et al. (2008) J Mol Endocrinol 40, 173–84

Kok M et al. (2009) J Natl Cancer Inst 101, 1725–9

He X et al. (2010) Oncogene 29, 2238–51

Ma Y et al. (2010) Mol Endocrinol 24, 76–90

Cañas A et al. (2012) Breast Cancer Res 14, R153

Bhatt S et al. (2012) Mol Cell Biol 32, 1928–43

Chen, D. et al. (2000) Mol Cell 6, 127-37.

Métivier R et al. (2002) EMBO J 21, 3443–53

Dutertre M and Smith CL (2003) Mol Endocrinol 17, 1296–314

Lu Q et al. (2003) J Biol Chem 278, 4639–45

Cui Y et al. (2004) Cancer Res 64, 9199–208

Murphy L et al. (2004) Clin Cancer Res 10, 1354–9

Murphy LC et al. (2004) Clin Cancer Res 10, 5902–6

Staka CM et al. (2005) Endocr Relat Cancer 12 Suppl 1, S85–97

Chen J et al. (2005) Blood 106, 328–37

Medunjanin S et al. (2005) J Biol Chem 280, 33006–14

Yamashita H et al. (2005) Breast Cancer Res 7, R753–64

Gburcik V et al. (2005) Mol Cell Biol 25, 3421–30

Shah YM and Rowan BG (2005) Mol Endocrinol 19, 732–48

Kim MY et al. (2006) Mol Endocrinol 20, 1479–93

Kuske B et al. (2006) Endocr Relat Cancer 13, 1121–33

Sekine Y et al. (2007) Oncogene 26, 6038–49

Britton DJ et al. (2008) J Am Soc Mass Spectrom 19, 729–40

Thomas RS et al. (2008) J Mol Endocrinol 40, 173–84

Kok M et al. (2009) J Natl Cancer Inst 101, 1725–9

He X et al. (2010) Oncogene 29, 2238–51

Ma Y et al. (2010) Mol Endocrinol 24, 76–90

Cañas A et al. (2012) Breast Cancer Res 14, R153

Bhatt S et al. (2012) Mol Cell Biol 32, 1928–43

Chen, D. et al. (2000) Mol Cell 6, 127-37.

Métivier R et al. (2002) EMBO J 21, 3443–53

Dutertre M and Smith CL (2003) Mol Endocrinol 17, 1296–314

Lu Q et al. (2003) J Biol Chem 278, 4639–45

Cui Y et al. (2004) Cancer Res 64, 9199–208

Murphy L et al. (2004) Clin Cancer Res 10, 1354–9

Murphy LC et al. (2004) Clin Cancer Res 10, 5902–6

Staka CM et al. (2005) Endocr Relat Cancer 12 Suppl 1, S85–97

Chen J et al. (2005) Blood 106, 328–37

Medunjanin S et al. (2005) J Biol Chem 280, 33006–14

Yamashita H et al. (2005) Breast Cancer Res 7, R753–64

Gburcik V et al. (2005) Mol Cell Biol 25, 3421–30

Shah YM and Rowan BG (2005) Mol Endocrinol 19, 732–48

Kim MY et al. (2006) Mol Endocrinol 20, 1479–93

Kuske B et al. (2006) Endocr Relat Cancer 13, 1121–33

Sekine Y et al. (2007) Oncogene 26, 6038–49

Britton DJ et al. (2008) J Am Soc Mass Spectrom 19, 729–40

Thomas RS et al. (2008) J Mol Endocrinol 40, 173–84

Kok M et al. (2009) J Natl Cancer Inst 101, 1725–9

He X et al. (2010) Oncogene 29, 2238–51

Ma Y et al. (2010) Mol Endocrinol 24, 76–90

Cañas A et al. (2012) Breast Cancer Res 14, R153

Bhatt S et al. (2012) Mol Cell Biol 32, 1928–43

Chen, D. et al. (2000) Mol Cell 6, 127-37.


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.