Upstream / Downstream

pathwayImage

Explore pathways related to this product.

Antibody Guarantee

CST Antibody Performance Guarantee

LEARN MORE  

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

Product Includes Quantity Applications Reactivity MW(kDa) Isotype
Phospho-NF-κB p65 (Ser536) (93H1) Rabbit mAb 3033 100 µl
Western Blotting Immunoprecipitation Immunofluorescence Flow Cytometry
H M R Hm Mk Pg 65 Rabbit IgG
NF-κB p65 (D14E12) XP® Rabbit mAb 8242 100 µl
Western Blotting Immunoprecipitation Immunohistochemistry Immunofluorescence Flow Cytometry Chromatin Immunoprecipitation
H M R Hm Mk Dg 65 Rabbit IgG

Product Description

PhosphoPlus® Duets from Cell Signaling Technology (CST) provide a means to assess protein activation status. Each Duet contains an activation-state and total protein antibody to your target of interest. These antibodies have been selected from CST's product offering based upon superior performance in specified applications.


Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).


1.  Baeuerle, P.A. and Henkel, T. (1994) Annu Rev Immunol 12, 141-79.

2.  Baeuerle, P.A. and Baltimore, D. (1996) Cell 87, 13-20.

3.  Haskill, S. et al. (1991) Cell 65, 1281-9.

4.  Thompson, J.E. et al. (1995) Cell 80, 573-82.

5.  Whiteside, S.T. et al. (1997) EMBO J 16, 1413-26.

6.  Traenckner, E.B. et al. (1995) EMBO J 14, 2876-83.

7.  Scherer, D.C. et al. (1995) Proc Natl Acad Sci USA 92, 11259-63.

8.  Chen, Z.J. et al. (1996) Cell 84, 853-62.

9.  Senftleben, U. et al. (2001) Science 293, 1495-9.

10.  Coope, H.J. et al. (2002) EMBO J 21, 5375-85.

11.  Xiao, G. et al. (2001) Mol Cell 7, 401-9.


Entrez-Gene Id 5970
Swiss-Prot Acc. Q04206

Protein Specific References

Fujita F et al. (2003) Mol Cell Biol 23, 7780–93

Ryo A et al. (2003) Mol Cell 12, 1413–26

Sakurai H et al. (2003) J Biol Chem 278, 36916–23

Buss H et al. (2004) J Biol Chem 279, 55633–43

Hu J et al. (2004) Carcinogenesis 25, 1991–2003

Doyle SL et al. (2005) J Biol Chem 280, 23496–501

Sancho R et al. (2005) J Immunol 175, 3990–9

Wang J et al. (2007) Cancer Cell 12, 239–51

Saha RN et al. (2007) J Immunol 179, 7101–9

Liu P et al. (2007) J Virol 81, 1401–11

Singh M et al. (2007) Chembiochem 8, 1308–16

Buerki C et al. (2008) Nucleic Acids Res 36, 1665–80

Dai Y et al. (2008) Clin Cancer Res 14, 549–58

Lee H et al. (2009) Cancer Cell 15, 283–93

Fan Y et al. (2009) J Biol Chem 284, 29290–7

Nihira K et al. (2010) Cell Death Differ 17, 689–98

Moreno R et al. (2010) Nucleic Acids Res 38, 6029–44

Jiao J et al. (2010) J Virol 84, 7668–74

O'Shea JM and Perkins ND (2010) Biochem J 426, 345–54

Rovillain E et al. (2011) Oncogene 30, 2356–66

Spiller SE et al. (2011) BMC Cancer 11, 136

Breitenstein A et al. (2011) Cardiovasc Res 89, 464–72

Clavijo PE and Frauwirth KA (2012) J Immunol 188, 1213–21

Pringle LM et al. (2012) Oncogene 31, 3525–35

Ziesché E et al. (2013) Nucleic Acids Res 41, 90–109

Mattioli, I. et al. (2004) Blood 104, 3302-4.

Buss, H. et al. (2004) J Biol Chem 279, 49571-4.

Schwabe, R.F. and Sakurai, H. (2005) FASEB J 19, 1758-60.

Fujita F et al. (2003) Mol Cell Biol 23, 7780–93

Ryo A et al. (2003) Mol Cell 12, 1413–26

Sakurai H et al. (2003) J Biol Chem 278, 36916–23

Buss H et al. (2004) J Biol Chem 279, 55633–43

Hu J et al. (2004) Carcinogenesis 25, 1991–2003

Doyle SL et al. (2005) J Biol Chem 280, 23496–501

Sancho R et al. (2005) J Immunol 175, 3990–9

Wang J et al. (2007) Cancer Cell 12, 239–51

Saha RN et al. (2007) J Immunol 179, 7101–9

Liu P et al. (2007) J Virol 81, 1401–11

Singh M et al. (2007) Chembiochem 8, 1308–16

Buerki C et al. (2008) Nucleic Acids Res 36, 1665–80

Dai Y et al. (2008) Clin Cancer Res 14, 549–58

Lee H et al. (2009) Cancer Cell 15, 283–93

Fan Y et al. (2009) J Biol Chem 284, 29290–7

Nihira K et al. (2010) Cell Death Differ 17, 689–98

Moreno R et al. (2010) Nucleic Acids Res 38, 6029–44

Jiao J et al. (2010) J Virol 84, 7668–74

O'Shea JM and Perkins ND (2010) Biochem J 426, 345–54

Rovillain E et al. (2011) Oncogene 30, 2356–66

Spiller SE et al. (2011) BMC Cancer 11, 136

Breitenstein A et al. (2011) Cardiovasc Res 89, 464–72

Clavijo PE and Frauwirth KA (2012) J Immunol 188, 1213–21

Pringle LM et al. (2012) Oncogene 31, 3525–35

Ziesché E et al. (2013) Nucleic Acids Res 41, 90–109

Mattioli, I. et al. (2004) Blood 104, 3302-4.

Buss, H. et al. (2004) J Biol Chem 279, 49571-4.

Schwabe, R.F. and Sakurai, H. (2005) FASEB J 19, 1758-60.


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
PhosphoPlus is a trademark of Cell Signaling Technology, Inc.
U.S. Patent No. 5,675,063.

8214
PhosphoPlus® NF-κB p65/RelA (Ser536) Antibody Duet