Upstream / Downstream

pathwayImage

Explore pathways related to this product.

Antibody Guarantee

CST Antibody Performance Guarantee

LEARN MORE  

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

Product Includes Quantity Applications Reactivity MW(kDa) Isotype
Phospho-MAPKAPK-2 (Thr334) (27B7) Rabbit mAb 3007 20 µl
Western Blotting Immunohistochemistry Immunofluorescence Flow Cytometry
H M R Mk 49 Rabbit IgG
Phospho-HSP27 (Ser82) (D1H2F6) XP® Rabbit mAb 9709 20 µl
Western Blotting Immunohistochemistry Immunofluorescence Flow Cytometry
H M 27 Rabbit IgG
Phospho-SAPK/JNK (Thr183/Tyr185) (81E11) Rabbit mAb 4668 20 µl
Western Blotting Immunoprecipitation Immunohistochemistry
H M R Dm Sc 46, 54 Rabbit IgG
Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb 3270 20 µl
Western Blotting Immunoprecipitation Immunohistochemistry Immunofluorescence Flow Cytometry Chromatin Immunoprecipitation
H M R Mk Pg 48 Rabbit IgG
Phospho-p53 (Ser15) (16G8) Mouse mAb 9286 20 µl
Western Blotting Immunofluorescence Flow Cytometry
H 53 Mouse IgG1
Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb 9664 20 µl
Western Blotting Immunoprecipitation Immunohistochemistry Immunofluorescence Flow Cytometry
H M R Mk 17, 19 Rabbit IgG
Cleaved PARP (Asp214) (D64E10) XP® Rabbit mAb 5625 20 µl
Western Blotting Immunoprecipitation Immunohistochemistry Immunofluorescence Flow Cytometry
H Mk 89 Rabbit IgG
Phospho-p38 MAPK (Thr180/Tyr182) (D3F9) XP® Rabbit mAb 4511 20 µl
Western Blotting Immunoprecipitation Immunohistochemistry Immunofluorescence Flow Cytometry
H M R Mk Mi Pg Sc 43 Rabbit IgG
Anti-rabbit IgG, HRP-linked Antibody 7074 100 µl
Western Blotting
All Goat 
Anti-mouse IgG, HRP-linked Antibody 7076 100 µl
Western Blotting
All Horse 

Product Description

The Stress and Apoptosis Antibody Sampler Kit provides an economical means of evaluating stress and apoptotic responses of each protein. The kit contains enough primary and secondary antibody to perform four western blot experiments per primary antibody.


Specificity / Sensitivity

Each antibody in the Stress and Apoptosis Antibody Sampler Kit detects endogenous levels of target protein. Antibodies do not cross-react with any isoforms or phosphorylation sites of the target protein.


Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic peptide correspond- ing to amino-terminal residues adjacent to Asp175 of human Caspase-3 or residues surrounding Asp214 of human PARP. Phospho-specific monoclonal antibody is produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Ser82 of human HSP27, Ser73 of human c-Jun, Thr334 of human MAP- KAPK-2, Ser15 of human p53, Thr180/Tyr182 of human p38 MAPK, or Thr183/Tyr185 of human SAPK/JNK.

Cells respond to environmental or intracellular stresses through various mechanisms ranging from initiation of prosurvival strategies to activation of cell death pathways that remove damaged cells from the organism. Many of the proteins and cellular processes involved in normal signaling and survival pathways also play dual roles in cell death-promoting mechanisms. Apoptosis is a regulated cellular suicide mechanism characterized by nuclear condensation, cell shrinkage, membrane blebbing, and DNA fragmentation. Caspase-3 (CPP-32, Apoptain, Yama, SCA-1) is a critical executioner of apoptosis, as it is either partially or totally responsible for the proteolytic cleavage of many key proteins such as the nuclear enzyme poly (ADP-ribose) polymerase (PARP) (1). PARP appears to be involved in DNA repair in response to environmental stress (2). This protein can be cleaved by many ICE-like caspases in vitro (3,4) and is one of the main cleavage targets of caspase-3 in vivo (5,6). PARP helps cells to maintain their viability; cleavage of PARP facilitates cellular disassembly and serves as a marker of cells undergoing apoptosis (7). The p53 tumor suppressor protein plays a major role in cellular response to DNA damage and other genomic aberrations. Activation of p53 can lead to either cell cycle arrest and DNA repair or apoptosis (8). DNA damage induces phosphorylation of p53 at Ser15 and Ser20 and leads to a reduced interaction between p53 and its negative regulator, the oncoprotein MDM2 (9). MDM2 inhibits p53 accumulation by targeting it for ubiquitination and proteasomal degradation (10,11). Stress-activated protein kinases (SAPK)/Jun amino-terminal kinases (JNK) are members of the MAPK family that are activated by a variety of environmental stresses, inflammatory cytokines, growth factors, and GPCR agonists. Stress signals are delivered to this cascade by small GTPases of the Rho family (Rac, Rho, cdc42) (12). SAPK/JNK, when active as a dimer, can translocate to the nucleus and regulate transcription through its effects on c-Jun, ATF-2, and other transcription factors (12,13). c-Jun is a member of the Jun Family, containing c-Jun, JunB, and JunD, and is a component of the transcription factor AP-1 (activator protein-1). Extracellular signals from growth factors, chemokines, and stress activate AP-1-dependent transcription. The transcriptional activity of c-Jun is regulated by phosphorylation at Ser63 and Ser73 through SAPK/JNK (reviewed in 14). AP-1 regulated genes exert diverse biological functions including cell proliferation, differentiation, and apoptosis, as well as transformation, invasion and metastasis, depending on cell type and context (13, 15-17). p38 MAP kinase (MAPK), also called RK (18) or CSBP (19), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (17-20). MKK3, MKK6, and SEK activate p38 MAP kinase by phosphorylation at Thr180 and Tyr182. MAPKAPK-2 is a direct target of p38 MAPK (17). Multiple residues of MAPKAPK-2 are phosphorylated in vivo in response to stress. However, only four residues (Thr25, Thr222, Ser272 and Thr334) are phosphorylated by p38 MAPK in an in vitro kinase assay (21). Phosphorylation at Thr222, Ser272, and Thr334 appears to be essential for the activity of MAPKAPK-2 (6). Heat shock protein (HSP) 27 is one of the small HSPs that are constitutively expressed at different levels in various cell types and tissues. In response to stress, the expression level of HSP27 increases several-fold to confer cellular resistance to the adverse environmental change. HSP27 is phosphorylated at Ser15, Ser78, and Ser82 by MAPKAPK-2 as a result of the activation of the p38 MAP kinase pathway (19,22).


1.  Fernandes-Alnemri, T. et al. (1994) J Biol Chem 269, 30761-4.

2.  Satoh, M.S. and Lindahl, T. (1992) Nature 356, 356-358.

3.  Levine, A.J. (1997) Cell 88, 323-31.

4.  Rouse, J. et al. (1994) Cell 78, 1027-37.

5.  Lazebnik, Y. A. et al. (1994) Nature 371, 346-347.

6.  Cohen, G.M. (1997) Biochem J 326 ( Pt 1), 1-16.

7.  Nicholson, D.W. et al. (1995) Nature 376, 37-43.

8.  Davis, R.J. (2000) Cell 103, 239-52.

9.  Han, J. et al. (1994) Science 265, 808-11.

10.  Ben-Levy, R. et al. (1995) EMBO J. 14, 5920-5930.

11.  Landry, J. et al. (1992) J. Biol. Chem. 267, 794-803.

12.  Kyriakis, J.M. and Avruch, J. (2001) Physiol Rev 81, 807-69.

13.  Lee, J.C. et al. (1994) Nature 372, 739-46.

14.  Shieh, S.Y. et al. (1997) Cell 91, 325-34.

15.  Freshney, N.W. et al. (1994) Cell 78, 1039-49.

16.  Tewari, M. et al. (1995) Cell 81, 801-809.

17.  Chehab, N.H. et al. (1999) Proc Natl Acad Sci U S A 96, 13777-82.

18.  Oliver, F.J. et al. (1998) J. Biol. Chem. 273, 33533-33539.

19.  Honda, R. et al. (1997) FEBS Lett 420, 25-7.

20.  Leppä, S. and Bohmann, D. (1999) Oncogene 18, 6158-62.

21.  Shaulian, E. and Karin, M. (2002) Nat Cell Biol 4, E131-6.

22.  Weiss, C. and Bohmann, D. (2004) Cell Cycle 3, 111-3.


Entrez-Gene Id 836 , 3315 , 3725 , 9261 , 1432 , 5600 , 5603 , 6300 , 7157 , 142 , 5599
Swiss-Prot Acc. P42574 , P04792 , P05412 , P49137 , Q16539 , Q15759 , O15264 , P53778 , P04637 , P09874 , P45983

Protein Specific References

Butt E et al. (2001) J Biol Chem 276, 7108–13

Benn SC et al. (2002) Neuron 36, 45–56

Rane MJ et al. (2003) J Biol Chem 278, 27828–35

Relou IA et al. (2003) J Biol Chem 278, 32638–44

Pillai VB et al. (2011) Mol Cell Biol 31, 2349–63

Ando K et al. (2011) J Biol Chem 286, 7619–28

Chehab NH et al. (2000) Genes Dev 14, 278–88

Persons DL et al. (2000) J Biol Chem 275, 35778–85

Buschmann T et al. (2000) Cancer Res 60, 896–900

Stewart ZA et al. (2001) Oncogene 20, 113–24

Bean LJ and Stark GR (2001) Oncogene 20, 1076–84

Xie S et al. (2001) J Biol Chem 276, 43305–12

Adamson AW et al. (2002) J Biol Chem 277, 38222–9

Bulavin DV et al. (2002) Nat Genet 31, 210–5

Shono T et al. (2002) Cancer Res 62, 1069–76

Hase H et al. (2002) J Biol Chem 277, 46950–8

Bischof O et al. (2002) EMBO J 21, 3358–69

Qin JZ et al. (2002) Oncogene 21, 2991–3002

Hofmann TG et al. (2002) Nat Cell Biol 4, 1–10

Chouinard N et al. (2002) Biochem J 365, 133–45

Kim SJ et al. (2002) J Biol Chem 277, 33501–8

Chen K et al. (2003) J Biol Chem 278, 39527–33

Sengupta S et al. (2003) EMBO J 22, 1210–22

Urban G et al. (2003) J Biol Chem 278, 9747–53

Oguchi K et al. (2003) Blood 101, 3622–7

Hideshima T et al. (2003) Blood 101, 1530–4

Lindström MS and Wiman KG (2003) Oncogene 22, 4993–5005

Hofseth LJ et al. (2003) Proc Natl Acad Sci U S A 100, 143–8

Möller A et al. (2003) Cancer Res 63, 4310–4

Wang C and Chen J (2003) J Biol Chem 278, 2066–71

Matsuoka M et al. (2003) Environ Health Perspect 111, 509–12

Yanamadala S and Ljungman M (2003) Mol Cancer Res 1, 747–54

Goudelock DM et al. (2003) J Biol Chem 278, 29940–7

Louria-Hayon I et al. (2003) J Biol Chem 278, 33134–41

Shiseki M et al. (2003) Cancer Res 63, 2373–8

Li Y et al. (2004) Oncogene 23, 7355–65

Rui Y et al. (2004) EMBO J 23, 4583–94

Vaghefi H and Neet KE (2004) Oncogene 23, 8078–87

Nair VD et al. (2004) J Biol Chem 279, 27494–501

Takagi M et al. (2004) Blood 103, 283–90

Ito K et al. (2004) Cancer Res 64, 1071–8

Koutsodontis G and Kardassis D (2004) Oncogene 23, 9190–200

Jackson MW et al. (2004) Oncogene 23, 4477–87

Dohoney KM et al. (2004) Oncogene 23, 49–57

Yeh PY et al. (2004) Oncogene 23, 3580–8

Thompson T et al. (2004) J Biol Chem 279, 53015–22

Komiyama S et al. (2004) Biochem Biophys Res Commun 323, 816–22

Soubeyrand S et al. (2004) Eur J Biochem 271, 3776–84

Mroz RM et al. (2004) Am J Respir Cell Mol Biol 30, 564–8

Tritarelli A et al. (2004) Mol Biol Cell 15, 3751–7

Feki A et al. (2005) Oncogene 24, 3726–36

Li Z et al. (2005) J Biol Chem 280, 16843–50

Di Stefano V et al. (2005) Oncogene 24, 5431–42

Hershko T et al. (2005) Cell Death Differ 12, 377–83

Mayo LD et al. (2005) J Biol Chem 280, 25953–9

Wesierska-Gadek J et al. (2005) Mol Cancer Ther 4, 113–24

Wang L et al. (2005) Oncogene 24, 3020–7

Ou YH et al. (2005) Mol Biol Cell 16, 1684–95

Zhao Y et al. (2006) Mol Cell Biol 26, 2782–90

Gresko E et al. (2006) EMBO J 25, 1883–94

Moiseeva O et al. (2006) Mol Biol Cell 17, 1583–92

Ichwan SJ et al. (2006) Oncogene 25, 1216–24

Knights CD et al. (2006) J Cell Biol 173, 533–44

Zeng PY and Berger SL (2006) Cancer Res 66, 10701–8

Li AG et al. (2006) Mol Cell 23, 575–87

Yoshida K et al. (2006) J Biol Chem 281, 5734–40

Li DW et al. (2006) Oncogene 25, 3006–22

Fraser M et al. (2006) Oncogene 25, 2203–12

Paulsen MT et al. (2006) Mol Cancer 5, 25

Li HH et al. (2007) EMBO J 26, 402–11

Nag A et al. (2007) J Biol Chem 282, 8812–20

Taira N et al. (2007) Mol Cell 25, 725–38

Li Q et al. (2007) Cancer Res 67, 66–74

Lambrot R et al. (2007) J Clin Endocrinol Metab 92, 2632–9

Ivanov GS et al. (2007) Mol Cell Biol 27, 6756–69

Nakanishi M et al. (2007) J Biol Chem 282, 22993–3004

Liu Y et al. (2007) J Biol Chem 282, 2505–11

Derheimer FA et al. (2007) Proc Natl Acad Sci U S A 104, 12778–83

Lee JH et al. (2007) J Cell Sci 120, 2259–71

Mantovani F et al. (2007) Nat Struct Mol Biol 14, 912–20

Singh K et al. (2007) PLoS One 2, e660

Zhu H et al. (2008) Int J Cancer 123, 2741–9

Wang H et al. (2008) J Biol Chem 283, 2564–74

Sun L et al. (2008) J Exp Clin Cancer Res 27, 35

Chang PC and Li M (2008) J Virol 82, 278–90

Lin T et al. (2008) Toxicology 247, 145–53

Chen JJ et al. (2008) J Immunol 180, 8030–9

Shouse GP et al. (2008) Mol Cell Biol 28, 448–56

Kitagawa M et al. (2008) Mol Cell 29, 217–31

Habold C et al. (2008) J Cell Mol Med 12, 607–21

Wang Z et al. (2009) Pharm Res 26, 1140–8

Bar JK et al. (2009) Int J Gynecol Cancer 19, 1322–8

Puca R et al. (2009) Mol Cancer 8, 85

Nishimura T et al. (2009) J Biol Chem 284, 36442–52

Yadavilli S et al. (2009) J Biochem Mol Toxicol 23, 373–86

Yamaguchi H et al. (2009) J Biol Chem 284, 11171–83

Fraser JA et al. (2010) J Biol Chem 285, 37762–72

Fraser JA et al. (2010) J Biol Chem 285, 37773–86

Shang X et al. (2010) Oncogene 29, 4938–46

Chen X et al. (2010) J Biol Chem 285, 12823–30

Kawano T et al. (2010) Int J Oncol 37, 787–95

Moehlenbrink J et al. (2010) Cancer Lett 292, 119–24

Venerando A et al. (2010) Cell Mol Life Sci 67, 1105–18

Puca R et al. (2010) Free Radic Biol Med 48, 1338–46

Marchenko ND et al. (2010) Cell Death Differ 17, 255–67

Baxter EW and Milner J (2010) J Neurooncol 97, 373–82

Muñoz-Fontela C et al. (2011) Cell Cycle 10, 3701–5

Wu L et al. (2011) J Biol Chem 286, 2236–44

Ozeki C et al. (2011) J Biol Chem 286, 18251–60

Mellert HS et al. (2011) J Biol Chem 286, 4264–70

Valbuena A et al. (2011) PLoS One 6, e17320

Xu S et al. (2011) J Cardiovasc Pharmacol 58, 263–71

Seo SK et al. (2011) J Thorac Oncol 6, 1313–9

Savelyeva I and Dobbelstein M (2011) Oncogene 30, 865–75

Wu ZZ et al. (2011) J Cell Physiol 226, 2415–28

Smeenk L et al. (2011) PLoS One 6, e17574

Grison A et al. (2011) Proc Natl Acad Sci U S A 108, 17979–84

Aranha MM et al. (2011) PLoS One 6, e21396

Gully CP et al. (2012) Proc Natl Acad Sci U S A 109, E1513–22

Wang H et al. (2012) DNA Repair (Amst) 11, 146–56

Chan C et al. (2013) Mol Cell Biol 33, 485–97

Thakur BK et al. (2013) Int J Cancer 132, 766–74

Yang Y et al. (2013) J Biol Chem 288, 529–39

Xu S et al. (2013) Cell Res 23, 423–35

Xie, S. et al. (2001) J Biol Chem 276, 36194-9.

Minamoto, T. et al. (2001) Oncogene 20, 3341-7.

Vaziri, H. et al. (2001) Cell 107, 149-159.

Chehab, N.H. et al. (1999) Proc Natl Acad Sci U S A 96, 13777-82.

Kauppinen TM et al. (2006) Proc Natl Acad Sci U S A 103, 7136–41


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
U.S. Patent No. 5,675,063.