News from the Bench

Discover what’s going on at CST, receive our latest application notes and tips, read our science features, and learn about our products.

Subscribe

PTMScan® Motif Antibody Kits
New Format-Same Price

Now 10 Assays Per Kit

Order Now

Pricing & Additional Information

To learn more about our Proteomics Kits and Services, including pricing, please answer a few questions for our proteomics group.

Contact the CST Proteomics Group  

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

Product Includes Cap Color Volume (with Count)
Symmetric Di-Methyl Arginine Motif [sdme-RG] Immunoaffinity Beads Blue 10 x 80 µl
PTMScan® IAP Buffer (10X) 9993 White 10 x 600 µl
PTMScan® Limited Use License  

Product Usage Information

Cells are lysed in a urea-containing buffer, cellular proteins are digested by proteases, and the resulting peptides are purified by reversed-phase solid-phase extraction. Peptides are then subjected to immunoaffinity purification using a PTMScan® Motif Antibody conjugated to protein A agarose beads. Unbound peptides are removed through washing, and the captured PTM-containing peptides are eluted with dilute acid. Reversed-phase purification is performed on microtips to desalt and separate peptides from antibody prior to concentrating the enriched peptides for LC-MS/MS analysis. CST recommends the use of PTMScan® IAP Buffer #9993 included in the kit. An alternate PTMScan® IAP Buffer Plus Detergent #9992, which may reduce nonspecific interactions, is available separately. A detailed protocol and Limited Use License allowing the use of the patented PTMScan® method are included with the kit.


Storage: Antibody beads supplied in IAP buffer containing 50% glycerol. Store at -20°C. Do not aliquot the antibody.

Product Description

PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur (1). For more information on PTMScan® Proteomics Services, please visit www.cellsignal.com/common/content/content.jsp?id=ptmscan-services.


Arginine methylation is a prevalent PTM found on both nuclear and cytoplasmic proteins. Arginine methylated proteins are involved in many different cellular processes, including transcriptional regulation, signal transduction, RNA metabolism, and DNA damage repair (1-3). Arginine methylation is carried out by the arginine N-methyltransferase (PRMT) family of enzymes that catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a guanidine nitrogen of arginine (4). There are three different types of arginine methylation: asymmetric dimethylarginine (aDMA, omega-NG,NG-dimethylarginine), where two methyl groups are placed on one of the terminal nitrogen atoms of the guanidine group of arginine; symmetric dimethylarginine (sDMA, omega-NG,N’G-dimethylarginine), where one methyl group is placed on each of the two terminal guanidine nitrogens of arginine; and monomethylarginine (MMA, omega-NG-dimethylarginine), where a single methyl group is placed on one of the terminal nitrogen atoms of arginine. Each of these modifications has potentially different functional consequences. Though all PRMT proteins catalyze the formation of MMA, Type I PRMTs (PRMT1, 3, 4, and 6) add an additional methyl group to produce aDMA, while Type II PRMTs (PRMT5 and 7) produce sDMA. Methylated arginine residues often reside in glycine-arginine rich (GAR) protein domains, such as RGG, RG, and RXR repeats (5). However, PRMT4/CARM1 and PRMT5 methylate arginine residues within proline-glycine-methionine rich (PGM) motifs (6).


In undifferentiated mouse embryonic neural precursors, symmetrically dimethylated histone H4R3 is prevalent, but in later stages of development, both symmetric and asymmetric dimethyl H4R3 modifications are detected in post-mitotic neurons and developing oligodendrocytes. This implies that sDMA modifications may be negative epigenetic regulatory events while aDMA modifications may signal epigenetic activation sites (7).


1.  Bedford, M.T. and Richard, S. (2005) Mol Cell 18, 263-72.

2.  Pahlich, S. et al. (2006) Biochim Biophys Acta 1764, 1890-903.

3.  Bedford, M.T. and Clarke, S.G. (2009) Mol Cell 33, 1-13.

4.  McBride, A.E. and Silver, P.A. (2001) Cell 106, 5-8.

5.  Gary, J.D. and Clarke, S. (1998) Prog Nucleic Acid Res Mol Biol 61, 65-131.

6.  Cheng, D. et al. (2007) Mol Cell 25, 71-83.

7.  Chittka, A. (2010) PLoS One 5, e13807.


Product Specific References

Dhar, S. et al. (2013) Sci Rep 3, 1311.


For Research Use Only. Not For Use In Diagnostic Procedures.
AcetylScan® is a trademark of Cell Signaling Technology, Inc.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.
MethylScan® is a trademark of Cell Signaling Technology, Inc.
PhosphoScan® is a trademark of Cell Signaling Technology, Inc.
PTMScan® is a trademark of Cell Signaling Technology, Inc.
UbiScan® is a trademark of Cell Signaling Technology, Inc.