News from the Bench

Discover what’s going on at CST, receive our latest application notes and tips, read our science features, and learn about our products.

Subscribe

PTMScan® Motif Antibody Kits
New Format-Same Price

Now 10 Assays Per Kit

Order Now

Pricing & Additional Information

To learn more about our Proteomics Kits and Services, including pricing, please answer a few questions for our proteomics group.

Contact the CST Proteomics Group  

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

Product Includes Cap Color Volume (with Count)
Succinyl-Lysine Motif [Succ-K] Immunoaffinity Beads Blue 10 x 80 µl
PTMScan® IAP Buffer (10X) 9993 White 10 x 600 µl
PTMScan® Limited Use License  

Product Usage Information

Cells are lysed in a urea-containing buffer, cellular proteins are digested by proteases, and the resulting peptides are purified by reversed-phase solid-phase extraction. Peptides are then subjected to immunoaffinity purification using a PTMScan® Motif Antibody conjugated to protein A agarose beads. Unbound peptides are removed through washing, and the captured PTM-containing peptides are eluted with dilute acid. Reversed-phase purification is performed on microtips to desalt and separate peptides from antibody prior to concentrating the enriched peptides for LC-MS/MS analysis. CST recommends the use of PTMScan® IAP Buffer #9993 included in the kit. An alternate PTMScan® IAP Buffer Plus Detergent #9992, which may reduce nonspecific interactions, is available separately. A detailed protocol and Limited Use License allowing the use of the patented PTMScan® method are included with the kit.


Storage: Antibody beads supplied in IAP buffer containing 50% glycerol. Store at -20°C. Do not aliquot the antibody.

Product Description

PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur (1). For more information on PTMScan® Proteomics Services, please visit www.cellsignal.com/common/content/content.jsp?id=ptmscan-services.


Lysine is subject to a wide array of regulatory post-translational modifications due to its positively charged ε-amino group side chain. The most prevalent of these are ubiquitination and acetylation, which are highly conserved among prokaryotes and eukaryotes (1,2). Acyl group transfer from the metabolic intermediates acetyl-, succinyl-, malonyl-, glutaryl-, butyryl-, propionyl-, and crotonyl-CoA all neutralize lysine’s positive charge and confer structural alterations affecting substrate protein function. Lysine acetylation is catalyzed by histone acetyltransferases, HATs, using acetyl-CoA as a cofactor (3,4). Deacylation is mediated by histone deacetylases, HDACs 1-11, and NAD-dependent Sirtuins 1-7. Some sirtuins have little to no deacetylase activity, suggesting that they are better suited for other acyl lysine substrates (5).


Sirt 5 is a predominantly mitochondrial desuccinylase and demalonylase (5,6). In the absence of a known succinyltransferase, succinylation is likely driven by the concentration of succinyl-CoA and intracellular pH and is subject to metabolic fluctuations (7,8). Protein succinylation is especially prevalent among mitochondrial metabolic proteins and bacteria, further solidifying the evolutionary link between mitochondria and prokaryotes. It often occurs at lysine residues that are alternatively acetylated or ubiquitinated. More than a thousand lysine succinylation sites were identified on hundreds of proteins including glutamate dehydrogenase (15 sites), malate dehydrogenase, citrate synthase, carbamoyl phosphate synthase 1, and histone proteins (9).


1.  Liu, Z. et al. (2014) Nucleic Acids Res 42, D531-6.

2.  Lee, S. (2013) Toxicol Res 29, 81-6.

3.  Lin, H. et al. (2012) ACS Chem Biol 7, 947-60.

4.  Zhang, Z. et al. (2011) Nat Chem Biol 7, 58-63.

5.  Du, J. et al. (2011) Science 334, 806-9.

6.  Rardin, M.J. et al. (2013) Cell Metab 18, 920-33.

7.  Peng, C. et al. (2011) Mol Cell Proteomics 10, M111.012658.

8.  Park, J. et al. (2013) Mol Cell 50, 919-30.

9.  Weinert, B.T. et al. (2013) Cell Rep 4, 842-51.



For Research Use Only. Not For Use In Diagnostic Procedures.
AcetylScan® is a trademark of Cell Signaling Technology, Inc.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.
MethylScan® is a trademark of Cell Signaling Technology, Inc.
PhosphoScan® is a trademark of Cell Signaling Technology, Inc.
PTMScan® is a trademark of Cell Signaling Technology, Inc.
UbiScan® is a trademark of Cell Signaling Technology, Inc.
Use of Cell Signaling Technology (CST) Motif Antibodies within certain methods (e.g., U.S. Patents No. 7,198,896 and 7,300,753) may require a license from CST. For information regarding academic licensing terms please have your technology transfer office contact CST Legal Department at CST_ip@cellsignal.com. For information regarding commercial licensing terms please contact CST Pharma Services Department at ptmscan@cellsignal.com.