Upstream / Downstream

Explore pathways related to this product.

Our U.S. Offices Will Be Closing Early

Our U.S. offices will be closing early on November 24th at 6:00 PM EST.

To Purchase # 6412S

6412S 300 µl (3 nmol) $249.00
$ 0. 00

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

REACTIVITY
M

Western blot analysis of extracts from NIH/3T3 cells, transfected with 100 nM SignalSilence® Control siRNA (Unconjugated) #6568 (-), SignalSilence® PARP siRNA I #6409 (Mouse Specific) (+), or SignalSilence® PARP siRNA II (Mouse Specific) (+) using PARP (46D11) Rabbit mAb #9532 (upper) or α-Tubulin (11H10) Rabbit mAb #2125 (lower). The PARP (46D11) Rabbit mAb confirms silencing of PARP expression, while the α-Tubulin (11H10) Rabbit mAb is used as a loading control.

Learn more about how we get our images
Image

Product Usage Information

CST recommends transfection with 100 nM SignalSilence® PARP siRNA II (Mouse Specific) 48 to 72 hours prior to cell lysis. For transfection procedure, follow protocol provided by the transfection reagent manufacturer. Please feel free to contact CST with any questions on use.

Each vial contains the equivalent of 100 transfections, which corresponds to a final siRNA concentration of 100 nM per transfection in a 24-well plate with a total volume of 300 μl per well.


Storage: SignalSilence® siRNA is supplied in RNAse-free water. Aliquot and store at -20ºC.

Product Description

SignalSilence® PARP siRNA II (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit PARP expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.


Quality Control

Oligonucleotide synthesis is monitored base by base through trityl analysis to ensure appropriate coupling efficiency. The oligo is subsequently purified by affinity-solid phase extraction. The annealed RNA duplex is further analyzed by mass spectrometry to verify the exact composition of the duplex. Each lot is compared to the previous lot by mass spectrometry to ensure maximum lot-to-lot consistency.

PARP, a 116 kDa nuclear poly (ADP-ribose) polymerase, appears to be involved in DNA repair in response to environmental stress (1). This protein can be cleaved by many ICE-like caspases in vitro (2,3) and is one of the main cleavage targets of caspase-3 in vivo (4,5). In human PARP, the cleavage occurs between Asp214 and Gly215, which separates the PARP amino-terminal DNA binding domain (24 kDa) from the carboxy-terminal catalytic domain (89 kDa) (2,4). PARP helps cells to maintain their viability; cleavage of PARP facilitates cellular disassembly and serves as a marker of cells undergoing apoptosis (6).


1.  Cohen, G.M. (1997) Biochem J 326 ( Pt 1), 1-16.

2.  Nicholson, D.W. et al. (1995) Nature 376, 37-43.

3.  Satoh, M.S. and Lindahl, T. (1992) Nature 356, 356-8.

4.  Lazebnik, Y.A. et al. (1994) Nature 371, 346-7.

5.  Tewari, M. et al. (1995) Cell 81, 801-9.

6.  Oliver, F.J. et al. (1998) J Biol Chem 273, 33533-9.


Entrez-Gene Id 11545
Swiss-Prot Acc. P11103


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.
SignalSilence® is a trademark of Cell Signaling Technology, Inc.