Upstream / Downstream

Explore pathways related to this product.

Important Ordering Details

Custom Ordering Details: Product is assembled upon order. Please allow up to three business days for your product to be processed.

Our U.S. Offices Are Closed

Our U.S. offices are closed in observance of Labor Day. We will reopen on Tuesday, September 2nd.

Thank you for your patience.

To Purchase # 6522S

6522S 300 µl (3 nmol) $249.00
$ 0. 00

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

REACTIVITY
H

Western blot analysis of extracts from HeLa cells, transfected with 100 nM SignalSilence® Control siRNA (Fluorescein Conjugate) #6201 (-) or SignalSilence® Chk1 siRNA I #6241 or SignalSilence® Chk1 siRNA II (+), using Chk1 (2G1D5) Mouse mAb #2360 and β-Actin (13E5) Rabbit mAb #4970. Chk1 (2G1D5) Mouse mAb confirms silencing of Chk1 expression and β-Actin (13E5) Rabbit mAb is used to control for loading and specificity of Chk1 siRNA.

Learn more about how we get our images
Image

Product Usage Information

CST recommends transfection with 50 nM Chk1 siRNA II 48 to 72 hours prior to cell lysis. For transfection procedure, follow protocol provided by the transfection reagent manufacturer. Please feel free to contact CST with any questions on use.

Each vial contains the equivalent of 100 transfections, which corresponds to a final siRNA concentration of 100 nM per transfection in a 24-well plate with a total volume of 300 μl per well.


Storage: SignalSilence® siRNA is supplied in RNAse-free water. Aliquot and store at -20ºC.

Product Description

SignalSilence® Chk1 siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit Chk1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce protein expression by western analysis.


Quality Control

Oligonucleotide synthesis is monitored base by base through trityl analysis to ensure appropriate coupling efficiency. The oligo is subsequently purified by affinity-solid phase extraction. The annealed RNA duplex is further analyzed by mass spectrometry to verify the exact composition of the duplex. Each lot is compared to the previous lot by mass spectrometry to ensure maximum lot-to-lot consistency.

Chk1 kinase acts downstream of ATM/ATR kinase and plays an important role in DNA damage checkpoint control, embryonic development, and tumor suppression (1). Activation of Chk1 involves phosphorylation at Ser317 and Ser345 by ATM/ATR, followed by autophosphorylation of Ser296. Activation occurs in response to blocked DNA replication and certain forms of genotoxic stress (2). While phosphorylation at Ser345 serves to localize Chk1 to the nucleus following checkpoint activation (3), phosphorylation at Ser317 along with site-specific phosphorylation of PTEN allows for re-entry into the cell cycle following stalled DNA replication (4). Chk1 exerts its checkpoint mechanism on the cell cycle, in part, by regulating the cdc25 family of phosphatases. Chk1 phosphorylation of cdc25A targets it for proteolysis and inhibits its activity through 14-3-3 binding (5). Activated Chk1 can inactivate cdc25C via phosphorylation at Ser216, blocking the activation of cdc2 and transition into mitosis (6). Centrosomal Chk1 has been shown to phosphorylate cdc25B and inhibit its activation of CDK1-cyclin B1, thereby abrogating mitotic spindle formation and chromatin condensation (7). Furthermore, Chk1 plays a role in spindle checkpoint function through regulation of aurora B and BubR1 (8). Research studies have implicated Chk1 as a drug target for cancer therapy as its inhibition leads to cell death in many cancer cell lines (9).


1.  Liu, Q. et al. (2000) Genes Dev 14, 1448-59.

2.  Zhao, H. and Piwnica-Worms, H. (2001) Mol Cell Biol 21, 4129-39.

3.  Jiang, K. et al. (2003) J Biol Chem 278, 25207-17.

4.  Martin, S.A. and Ouchi, T. (2008) Mol Cancer Ther 7, 2509-16.

5.  Chen, M.S. et al. (2003) Mol Cell Biol 23, 7488-97.

6.  Zeng, Y. et al. (1998) Nature 395, 507-10.

7.  Löffler, H. et al. (2006) Cell Cycle 5, 2543-7.

8.  Zachos, G. et al. (2007) Dev Cell 12, 247-60.

9.  Garber, K. (2005) J Natl Cancer Inst 97, 1026-8.


Entrez-Gene Id 1111
Swiss-Prot Acc. O14757


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.
SignalSilence® is a trademark of Cell Signaling Technology, Inc.
Limited Use Label License, RNA interference: This product is licensed under European Patent 1144623 and foreign equivalents from Ribopharma AG, Kulmbach, Germany and is provided only for use in non-commercial research specifically excluding use (a) in drug discovery or drug development, including target identification or target validation, by or on behalf of a commercial entity, (b) for contract research or commercial screening services, (c) for the production or manufacture of siRNA-related products for sale, or (d) for the generation of commercial databases for sale to Third Parties. Information about licenses for these and other commercial uses is available from Ribopharma AG, Fritz-Hornschuch-Str. 9, D-95326 Kulmbach, Germany.