Upstream / Downstream

Explore pathways related to this product.

Antibody Guarantee

CST Antibody Performance Guarantee

LEARN MORE  

To Purchase # 9563S

9563S 400 µl (40 immunoprecipitations) $329.00
$ 0. 00

Questions?

Find answers on our FAQs page.

ANSWERS  

Visit PhosphoSitePlus®

PTM information and tools available.

LEARN MORE

REACTIVITY SENSITIVITY MW (kDa) Isotype
H M R Hm Mk Dm Z B Endogenous 60 Rabbit IgG
Image

Immunoprecipitation of extracts from NIH/3T3 cells, untreated or treated with PDGF, using Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (Magnetic Bead Conjugate) (lanes 1 and 2). Rabbit (DA1E) mAb IgG XP® Isotype Control (Magnetic Bead Conjugate) #8726 was used as a negative control (lanes 3 and 4). The western blot was probed using Phospho-Akt (Ser473) (587F11) Mouse mAb #4051.

Learn more about how we got this image
Image
Image
Image
Image
Image
Page

Immunoprecipitation for Analysis by Western Blotting

This protocol is intended for immunoprecipitation of native proteins for analysis by western immunoblot or kinase activity.

A. Solutions and Reagents

NOTE: Prepare solutions with reverse osmosis deionized (RODI) or equivalently purified water.

  1. 20X Phosphate Buffered Saline (PBS): (#9808).
  2. 10X Cell Lysis Buffer: (#9803) 20 mM Tris (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM Sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na3VO4, 1 μg/ml Leupeptin

    NOTE: CST recommends adding 1 mM PMSF (#8553) before use*.

  1. 3X SDS Sample Buffer: (#7722) 187.5 mM Tris-HCl (pH 6.8 at 25°C), 6% w/v SDS, 30% glycerol, 150 mM DTT, 0.03% w/v bromophenol blue
  2. 6-Tube Magnetic Separation Rack: (#7017).
  3. 10X Kinase Buffer (for kinase assays): (#9802) To Prepare 1 ml of 1X kinase buffer, add 100 µl 10X kinase buffer to 900 µl dH2O, mix.
  4. ATP (10 mM) (for kinase assays): (#9804) To prepare 0.5 ml of ATP (200 µM), add 10 µl ATP (10 mM) to 490 µl 1X kinase buffer.

B. Preparing Cell Lysates

  1. Aspirate media. Treat cells by adding fresh media containing regulator for desired time.
  2. To harvest cells under nondenaturing conditions, remove media and rinse cells once with ice-cold PBS.
  3. Remove PBS and add 0.5 ml 1X ice-cold cell lysis buffer to each plate (10 cm) and incubate the plates on ice for 5 minutes.
  4. Scrape cells off the plates and transfer to microcentrifuge tubes. Keep on ice.
  5. Sonicate samples on ice three times for 5 seconds each.
  6. Microcentrifuge for 10 minutes at 4°C, 14,000 x g, and transfer the supernatant to a new tube. If necessary, lysate can be stored at –80°C.

C. Immunoprecipitation

  1. Take 200 μl cell lysate and add 10 µl of the immobilized antibody, incubate with rotation overnight at 4°C.
  2. Wash pellet by using magnetic rack to pellet beads, then discard supernatant once completely clear and add 500 µl of 1X cell lysis buffer, vortex to resuspend and wash the beads, repeat 4 more times for a total of 5 washes.
  3. Proceed to sample analysis by western blotting or kinase activity (section D).

D. Sample Analysis

Proceed to one of the following specific set of steps.

For Analysis by Western Immunoblotting

  1. Resuspend the pellet with 20 µl 3X SDS sample buffer. Vortex, then microcentrifuge for 30 sec at 14,000 x g.
  2. Heat the sample to 95–100°C for 2-5 min and microcentrifuge for 1 min at 14,000 x g.
  3. Load the sample (15–30 µl) on a 4–20% gel for SDS-PAGE.
  4. Analyze sample by western blot (see Western Immunoblotting Protocol).

NOTE: To minimize masking caused by denatured IgG heavy chains (~50 kDa), we recommend using Mouse Anti-Rabbit IgG (Light-Chain Specific) (L57A3) mAb (#3677) or Mouse Anti-Rabbit IgG (Conformation Specific) (L27A9) mAb (#3678) (or HRP conjugate #5127). To minimize masking caused by denatured IgG light chains (~25 kDa), we recommend using Mouse Anti-Rabbit IgG (Conformation Specific) (L27A9) mAb (#3678) (or HRP conjugate #5127).

For Analysis by Kinase Assay

  1. Wash pellet by using magnetic rack to pellet beads, then discard supernatant once completely clear and add 500 µl of 1X kinase buffer, vortex to resuspend and wash the beads, repeat 1 more time for a total of 2 washes. Keep on ice during washes.
  2. Suspend pellet in 40 µl 1X kinase buffer supplemented with 200 µM ATP and appropriate substrate.
  3. Incubate for 30 min at 30°C.
  4. Terminate reaction with 20 µl 3X SDS sample buffer. Vortex, then microcentrifuge for 30 sec.
  5. Transfer supernatant containing phosphorylated substrate to another tube.
  6. Heat the sample to 95–100°C for 2–5 min and microcentrifuge for 1 min at 14,000 x g.
  7. Load the sample (15–30 µl) on SDS-PAGE (4–20%).

posted December 2007

protocol id: 408

Product Usage Information

Application Dilutions
Immunoprecipitation 1:20

Storage: Supplied in PBS Buffer (pH 7.2), 0.1% Tween® 20. Store at 4°C. Do not aliquot the antibodies.

Specificity / Sensitivity

Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (Magnetic Bead Conjugate) detects endogenous levels of Akt protein only when phosphorylated at Ser473.


Species Reactivity: Human, Mouse, Rat, Hamster, Monkey, D. melanogaster, Zebrafish, Bovine
Species predicted to react based on 100% sequence homology: Monkey, Chicken, Xenopus, Dog, Pig

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic phosphopeptide corresponding to residues around Ser473 of human Akt protein.

Product Description

This Cell Signaling Technology antibody is immobilized by the covalent reaction of formylbenzamide-modified antibody with hydrazide-activated magnetic bead.

Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb (Magnetic Bead Conjugate) is useful for immunoprecipitation of Akt phosphorylated at Ser473. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Akt (Ser473) (D9E) XP® Rabbit mAb #4060.


Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).


1.  Franke, T.F. et al. (1997) Cell 88, 435-7.

2.  Burgering, B.M. and Coffer, P.J. (1995) Nature 376, 599-602.

3.  Franke, T.F. et al. (1995) Cell 81, 727-36.

4.  Cross, D.A. et al. (1995) Nature 378, 785-9.

5.  Alessi, D.R. et al. (1996) EMBO J 15, 6541-51.

6.  Sarbassov, D.D. et al. (2005) Science 307, 1098-101.

7.  Diehl, J.A. et al. (1998) Genes Dev 12, 3499-511.

8.  Jacinto, E. et al. (2006) Cell 127, 125-37.

9.  Cardone, M.H. et al. (1998) Science 282, 1318-21.

10.  Brunet, A. et al. (1999) Cell 96, 857-68.

11.  Zimmermann, S. and Moelling, K. (1999) Science 286, 1741-4.

12.  Cantley, L.C. and Neel, B.G. (1999) Proc Natl Acad Sci USA 96, 4240-5.

13.  Vlahos, C.J. et al. (1994) J Biol Chem 269, 5241-8.

14.  Hajduch, E. et al. (2001) FEBS Lett 492, 199-203.

15.  Gesbert, F. et al. (2000) J Biol Chem 275, 39223-30.

16.  Zhou, B.P. et al. (2001) Nat Cell Biol 3, 245-52.

17.  Navé, B.T. et al. (1999) Biochem J 344 Pt 2, 427-31.

18.  Inoki, K. et al. (2002) Nat Cell Biol 4, 648-57.

19.  Manning, B.D. et al. (2002) Mol Cell 10, 151-62.


Entrez-Gene Id 207, 208, 10000
Swiss-Prot Acc. P31749, P31751, Q9Y243

Protein Specific References

Germack R and Dickenson JM (2000) Br J Pharmacol 130, 867–74

Wick MJ et al. (2000) J Biol Chem 275, 40400–6

Rane MJ et al. (2001) J Biol Chem 276, 3517–23

Guizzetti M and Costa LG (2001) Neuroreport 12, 1639–42

Brognard J et al. (2001) Cancer Res 61, 3986–97

Maira SM et al. (2001) Science 294, 374–80

Schönherr E et al. (2001) J Biol Chem 276, 40687–92

Hill MM et al. (2001) J Biol Chem 276, 25643–6

Dhawan P et al. (2002) Cancer Res 62, 7335–42

Conus NM et al. (2002) J Biol Chem 277, 38021–8

Sano H et al. (2002) J Biol Chem 277, 19439–47

Egawa K et al. (2002) J Biol Chem 277, 38863–9

Kisseleva MV et al. (2002) J Biol Chem 277, 6266–72

Barry FA and Gibbins JM (2002) J Biol Chem 277, 12874–8

Ikonomov OC et al. (2002) Endocrinology 143, 4742–54

Rani MR et al. (2002) J Biol Chem 277, 38456–61

Ho R et al. (2002) Cancer Res 62, 6462–6

Wan X and Helman LJ (2003) Oncogene 22, 8205–11

Fukuda T et al. (2003) J Biol Chem 278, 51324–33

Kim HH et al. (2003) FASEB J 17, 2163–5

Min YH et al. (2004) Cancer Res 64, 5225–31

Tazzari PL et al. (2004) Br J Haematol 126, 675–81

Matsuzaki H et al. (2004) Biochemistry 43, 4284–93

Wolfrum S et al. (2004) Arterioscler Thromb Vasc Biol 24, 1842–7

Kaneko Y et al. (2004) J Cell Sci 117, 407–15

Esfandiarei M et al. (2004) J Virol 78, 4289–98

Baudhuin LM et al. (2004) FASEB J 18, 341–3

Dietze EC et al. (2004) Oncogene 23, 3851–62

Wu T et al. (2004) Mol Cancer Ther 3, 299–307

Honjo S et al. (2005) DNA Cell Biol 24, 141–7

Karlsson HK et al. (2005) Diabetes 54, 1459–67

Viniegra JG et al. (2005) J Biol Chem 280, 4029–36

Le XF et al. (2005) J Biol Chem 280, 2092–104

Smith E and Frenkel B (2005) J Biol Chem 280, 2388–94

Edwards LA et al. (2005) Oncogene 24, 3596–605

Karlsson HK et al. (2005) Diabetes 54, 1692–7

Kippenberger S et al. (2005) J Biol Chem 280, 3060–7

Jung HS et al. (2005) Mol Endocrinol 19, 2748–59

Khundmiri SJ et al. (2006) Am J Physiol Cell Physiol 291, C1247–57

Hers I and (2007) Blood 110, 4243–52

Ananthanarayanan B et al. (2007) J Biol Chem 282, 36634–41

Zunder ER et al. (2008) Cancer Cell 14, 180–92

Grenegård M et al. (2008) J Biol Chem 283, 18493–504

Abubaker J et al. (2009) Mol Cancer 8, 51

Chen PL and Easton AS (2011) Curr Neurovasc Res 8, 14–24

Van Aller GS et al. (2011) Biochem Biophys Res Commun 406, 194–9

Uesugi A et al. (2011) Cancer Res 71, 5765–78

Ou YH et al. (2011) Mol Cell 41, 458–70

Wang S et al. (2012) PLoS One 7, e37427

Glidden EJ et al. (2012) J Biol Chem 287, 581–8

Shih MC et al. (2012) Oncogene 31, 2389–400

Misra UK and Pizzo SV (2012) J Cell Biochem 113, 1488–500

Johnson AL et al. (2001) Biol Reprod 64, 1566–74

Zhang M and Riedel H (2009) J Cell Biochem 107, 65–75


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.
XP® is a trademark of Cell Signaling Technology, Inc.