Interested in promotions? | Click here >>

Product listing: Podoplanin (D9D7) Rabbit mAb, UniProt ID Q86YL7 #9047 to LXR-β (D6M9D) Rabbit mAb, UniProt ID P55055 #13519

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Podoplanin (aggrus, glycoprotein 36) is a single-pass transmembrane protein belonging to the type-1 family of sialomucin-like glycoproteins. Podoplanin was first described in the rat as a surface glycoprotein that regulated podocyte morphology (1). It is now commonly used as a marker of lymphatic endothelial cells, where its expression is associated with the process of lymphangiogenesis (2). Its role in this regard is presumably due to its putative involvement in regulating actin cytoskeleton dynamics (3). Research studies have shown that podoplanin expression is upregulated in a number of tumor types including colorectal cancers (4), oral squamous cell carcinomas (5), and germ cell tumors (6), with higher expression levels often associated with more aggressive tumors (7). Research studies have suggested a functional role for podoplanin in the stromal microenvironment of tumors. For example, it has been reported that podoplanin expression in cancer-associated fibroblasts (CAFs) is positively associated with a stromal environment that promotes cancer progression (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Western Blotting

Background: Troponin, working in conjunction with tropomyosin, functions as a molecular switch that regulates muscle contraction in response to changes in the intracellular Ca2+ concentration. Troponin consists of three subunits: the Ca2+-binding subunit troponin C (TnC), the tropomyosin-binding subunit troponin T (TnT), and the inhibitory subunit troponin I (TnI) (1). In response to β-adrenergic stimulation of the heart, Ser23 and Ser24 of TnI (cardiac) are phosphorylated by PKA and PKC. This phosphorylation stimulates a conformational change of the regulatory domain of TnC, reduces the association between TnI and TnC, and decreases myofilament Ca2+ sensitivity by reducing the Ca2+ binding affinity of TnC (1-3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Lysine-specific demethylase 1 (LSD1; also known as AOF2 and BHC110) is a nuclear amine oxidase homolog that acts as a histone demethylase and transcription cofactor (1). Gene activation and repression is specifically regulated by the methylation state of distinct histone protein lysine residues. For example, methylation of histone H3 at Lys4 facilitates transcriptional activation by coordinating the recruitment of BPTF, a component of the NURF chromatin remodeling complex, and WDR5, a component of multiple histone methyltransferase complexes (2,3). In contrast, methylation of histone H3 at Lys9 facilitates transcriptional repression by recruiting HP1 (4,5). LSD1 is a component of the CoREST transcriptional co-repressor complex that also contains CoREST, CtBP, HDAC1 and HDAC2. As part of this complex, LSD1 demethylates mono-methyl and di-methyl histone H3 at Lys4 through a FAD-dependent oxidation reaction to facilitate neuronal-specific gene repression in non-neuronal cells (1,6,7). In contrast, LSD1 associates with androgen receptor in human prostate cells to demethylate mono-methyl and di-methyl histone H3 at Lys9 and facilitate androgen receptor-dependent transcriptional activation (8). Therefore, depending on gene context LSD1 can function as either a transcriptional co-repressor or co-activator. LSD1 activity is inhibited by the amine oxidase inhibitors pargyline, deprenyl, clorgyline and tranylcypromine (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The ADAM (A Disintegrin and A Metalloprotease) family of multidomain membrane proteins influences cell signaling and adhesion by shedding cell surface proteins such as cytokines and growth factors, by influencing cell adhesion to the extracellular matrix (ECM), and by directly remodeling the ECM. Conserved domains in ADAM family members include a prodomain, a zinc-dependent metalloprotease domain, a disintegrin domain, a cysteine-rich domain, an EGF-like sequence, and a short cytoplasmic tail (1,2).The prodomain is thought to aid in protein folding. Disintegrin and cysteine-rich domains mediate adhesion, at least in part, through binding to integrins. Phosphorylation of the cytoplasmic tail as well as its interaction with other signaling proteins may influence intra- and extracellular signaling (1). ADAM9 is widely distributed and has been shown to affect migration in skin keratinocytes (3,4). Research studies have shown that ADAM9 is overexpressed in prostate cancer (5), pancreatic cancer (6), gastric cancer (7), and has been linked to invasion and metastasis in small cell lung cancer (8). Research has also shown that an alternatively spliced short (50 kDa) form of ADAM9 containing protease activity is involved in tumor cell invasion (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cullin-associated and neddylation-dissociated (CAND1)/TIP120A is a protein containing multiple HEAT repeats. It functions, in part, as an inhibitor of multiple cullin-RING ubiquitin ligases (CRLs) via binding to cullin-RBX complexes that are both unconjugated to NEDD8 and lack association with substrate recognition subunits (1-3). Indeed, CAND1 has been shown to bind all cullin family members in human cells and analysis of the crystal structure of human CAND1 bound to the CUL1-RBX1 complex suggests that CAND1 inhibits the activity of CRLs by sterically blocking both the substrate recognition subunit binding site and the NEDD8 conjugation site (1,3,4). Conversely, CAND1 binding to cullin-RBX complexes is incompatible with neddylation as NEDD8 conjugated to cullins blocks CAND1 binding, suggesting that CAND1 binds to cullins only after the COP9 signalosome has catalyzed cullin deneddylation. Through its ability to negatively regulate CRL assembly, CAND1 plays an integral part in facilitating CRL activation cycles that allow CRLs to utilize distinct substrate recognition subunits and protects these subunits from undergoing ubiquitin-dependent degradation (5-7).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the biosynthesis of serotonin (1) by converting tryptophan to 5-hydroxy-L-tryptophan (2). Two isoforms of TPH exist: TPH-1 is mainly expressed in the periphery, whereas the expression of TPH-2 is restricted to neuronal cells and the central nervous system (3). Most of the serotonin found throughout the body is synthesized by TPH-1 in enterochromaffin cells of the gastrointestinal tract. Targeted disruption of the tph1 gene results in low levels of circulating and tissue serotonin (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Antiviral innate immunity depends on the combination of parallel pathways triggered by virus detecting proteins in the Toll-like receptor (TLR) family and RNA helicases, such as Rig-I (retinoic acid-inducible gene I) and MDA-5 (melanoma differentiation-associated antigen 5), which promote the transcription of type I interferons (IFN) and antiviral enzymes (1-3). TLRs and helicase proteins contain sites that recognize the molecular patterns of different virus types, including DNA, single-stranded RNA (ssRNA), double-stranded RNA (dsRNA), and glycoproteins. These antiviral proteins are found in different cell compartments; TLRs (i.e. TLR3, TLR7, TLR8, and TLR9) are expressed on endosomal membranes and helicases are localized to the cytoplasm. Rig-I expression is induced by retinoic acid, LPS, IFN, and viral infection (4,5). Both Rig-I and MDA-5 share a DExD/H-box helicase domain that detects viral dsRNA and two amino-terminal caspase recruitment domains (CARD) that are required for triggering downstream signaling (4-7). Rig-I binds both dsRNA and viral ssRNA that contains a 5'-triphosphate end not seen in host RNA (8,9). Though structurally related, Rig-I and MDA-5 detect a distinct set of viruses (10,11). The CARD domain of the helicases, which is sufficient to generate signaling and IFN production, is recruited to the CARD domain of the MAVS/VISA/Cardif/IPS-1 mitochondrial protein, which triggers activation of NF-κB, TBK1/IKKε, and IRF-3/IRF-7 (12-15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: NADK, also known as NAD kinase, is a cytoplasmic protein responsible for maintaining the pool of available NADP+ and NADPH within the cell (1). Using ATP as a phosphate donor, NADK catalyzes the phosphorylation of NAD+ to NADP+. This molecule is then reduced to NADPH and utilized in various metabolic and biosynthetic pathways (2). NADK has been suggested to play a role in glucose metabolism due to the effect NADPH production has on both the insulin secretion and survival of pancreatic β-cells (3). NADPH has a vital role in protecting cells from oxidative stress through its neutralizing effect on reactive oxygen species (ROS), which also accumulate during cell growth (2, 3, 4). Along with the p53 tumor suppression protein, NADK has been a suggested target in cancer therapy due its link to NADPH production and its resulting protective role on growing and proliferating cells (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: ATP-dependent chromatin remodeling complexes play an essential role in the regulation of nuclear processes such as transcription and DNA replication and repair (1,2). The SWI/SNF chromatin remodeling complex consists of more than 10 subunits and contains a single molecule of either BRM or BRG1 as the ATPase catalytic subunit. The activity of the ATPase subunit disrupts histone-DNA contacts and changes the accessibility of crucial regulatory elements to the chromatin. The additional core and accessory subunits play a scaffolding role to maintain stability and provide surfaces for interaction with various transcription factors and chromatin (2-5). The interactions between SWI/SNF subunits and transcription factors, such as nuclear receptors, p53, Rb, BRCA1, and MyoD, facilitate recruitment of the complex to target genes for regulation of gene activation, cell growth, cell cycle, and differentiation processes (1,6-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Ubiquilin 2 (UBQLN2) is a broadly expressed member of the ubiquilin family of ubiquitin receptor proteins. UBQLN2 is a type 2 ubiquitin-like (UBL) protein that contains an amino-terminal UBL domain, multiple heat shock chaperonin-binding (STI) motifs, several PXX repeats, and a carboxy-terminal ubiquitin-associated (UBA) domain (1-3). Research studies indicate that the UBL domain of UBQLN2 can interact with proteasome subunits (4). The UBA domain of UBQLN2 can interact with ubiquitinated proteins and the autophagosome and allows UBQLN2 to participate in the ubiquitin-proteasome and autophagy pathways (5-8). Mutations in the PXX repeat region of the corresponding UBQLN2 gene are associated with an X-linked form of amyotrophic lateral sclerosis (ALS15) and dementia with reduced penetrance in females (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Members of the Janus family of tyrosine kinases (Jak1, Jak2, Jak3, and Tyk2) are activated by ligands binding to a number of associated cytokine receptors (1). Upon cytokine receptor activation, Jak proteins become autophosphorylated and phosphorylate their associated receptors to provide multiple binding sites for signaling proteins. These associated signaling proteins, such as Stats (2), Shc (3), insulin receptor substrates (4), and focal adhesion kinase (FAK) (5), typically contain SH2 or other phospho-tyrosine-binding domains.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein ubiquitination and deubiquitination are reversible processes catalyzed by ubiquitinating enzymes and deubiquitinating enzymes, respectively (1,2). Deubiquitinating enzymes (DUBs) are categorized into five subfamilies based on catalytic domain structure: USP, OTU, MJD, UCH, and JAMM/MPN. OTUD5, also known as DUBA, belongs to the OTU family of DUBs. Phosphorylation of OTUD5 at Ser177 is required to activate its DUB activity (3). Research studies have shown that OTUD5 plays a pivotal role in negatively regulating innate immune responses though its ability to bind and deubiquitinate K63-linked TRAF3, thereby suppressing production of IFN-I by macrophages (4). There is also evidence that OTUD5 participates in the adaptive immune response by negatively regulating the production of pro-inflammatory IL-17 by Th17 cells (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: PSMD10/Gankyrin is an ankyrin-repeat chaperone protein that is involved in the assembly of the 19S regulatory particle of the proteasome (1). Reasearch studies have demonstrated that PSMD10 is oncogenic and is overexpressed in hepatocullar carcinomas (2). Investigators believe the oncogenicity of PSMD10 may be linked to its ability to bind and regulate the stability and activity of pRB, CDK4, MDM2, and RelA (2-5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The minichromosome maintenance (MCM) 2-7 proteins are a family of six related proteins required for initiation and elongation of DNA replication. MCM2-7 bind together to form the heterohexameric MCM complex that is thought to act as a replicative helicase at the DNA replication fork (1-5). This complex is a key component of the pre-replication complex (pre-RC) (reviewed in 1). Cdc6 and CDT1 recruit the MCM complex to the origin recognition complex (ORC) during late mitosis/early G1 phase forming the pre-RC and licensing the DNA for replication (reviewed in 2). Licensing of the chromatin permits the DNA to replicate only once per cell cycle, thereby helping to ensure that genetic alterations and malignant cell growth do not occur (reviewed in 3). Phosphorylation of the MCM2, MCM3, MCM4, and MCM6 subunits appears to regulate MCM complex activity and the initiation of DNA synthesis (6-8). CDK1 phosphorylation of MCM3 at Ser112 during late mitosis/early G1 phase has been shown to initiate complex formation and chromatin loading in vitro (8). Phosphorylation of MCM2 at serine 139 by cdc7/dbf4 coincides with the initiation of DNA replication (9). MCM proteins are removed during DNA replication, causing chromatin to become unlicensed through inhibition of pre-RC reformation. Studies have shown that the MCM complex is involved in checkpoint control by protecting the structure of the replication fork and assisting in restarting replication by recruiting checkpoint proteins after arrest (reviewed in 3,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: KHSRP, also known as KSRP, is a KH domain-containing AU-rich element (ARE) binding protein (1). It recruits degradation machinery and activates mRNA turnover (2). This protein was previously shown to function as a regulator for splicing (3). KHSRP associates with both the Drosha and Dicer multiprotein complexes (4), and controls the biogenesis of some microRNAs by binding to the terminal loops of these microRNA precursors (3). KHSRP is found in neural and non-neural cell types in both the nucleus and the cytoplasm (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: TDP43 (TAR DNA-binding protein 43) is involved in transcriptional regulation and exon splicing (1,2). While normal TDP43 is a nuclear protein, pathological TDP43 is a component of insoluble aggregates in patients with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). In these disorders, TDP43 is abnormally ubiquitinated, phosphorylated and cleaved to generate carboxy-terminal fragments that are sequestered as insoluble aggregates in neuronal nuclei, perikarya, and neurites (3,4). Additionally, TDP43 inhibits the expression of the HIV-1 gene and regulates CFTR gene splicing (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Western Blotting

Background: RECQL4 is a member of the RecQ family of DNA helicases that plays an important role in global genomic stability. There are five members of this family in humans, and mutations in three of these, BLM, WRN and RECQL4, give rise to disorders that are characterized by premature aging and a predisposition to cancer (1). Despite the presence of a helicase domain, no helicase activity has been reported for RECQL4. Rather, RECQL4 has an ATPase function that is stimulated by ssDNA, and a ssDNA annealing activity that is inhibited by RPA (2). RECQL4 has been reported to interact with ubiquitin ligases UBR1 and UBR2 (3). The role of RECQL4 in tumor suppression and the maintenance of genomic integrity has been attributed to it’s activities associated with the regulation of DNA replication, and DNA recombination and repair (4-6).Mutations in the RECQL4 gene have been identified in a subset of patients with Rothmund-Thomson syndrome (RTS) - a disorder characterized by growth deficiency, skin and skeletal abnormalities, and cancer predisposition. Two more autosomal recessive disorders have been associated with RECQL4 gene mutations: RAPADILINO, and Baller-Gerold syndromes (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: L-DOPA decarboxylase (DDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme that catalyzes the decarboxylation of L-DOPA to dopamine (1) and L-5HTP to serotonin (2). By catalyzing the reaction to produce dopamine, DDC is involved in many important metabolic processes and plays a central role in the complex neuroendocrine-immune regulatory network (1). DDC is expressed in the central nervous system (3), but has also been detected in some peripheral organs such as the liver and adrenal gland, as well as leukocytes of rat and human (1). DDC is thought to be the sole enzyme responsible for the synthesis of the trace amines 2-phenylethylamine, p-tyramine, and tryptamine, which are considered to act as neuromodulators (2,4). DDC is also regarded as a general biomarker for neuroendocrine tumors (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1,2). The p300/CBP histone acetyltransferases acetylate multiple lysine residues in the amino terminal tail of histone H2B (Lys5, 12, 15, and 20) at gene promoters during transcriptional activation (1-3). Hyper-acetylation of the histone tails neutralizes the positive charge of these domains and is believed to weaken histone-DNA and nucleosome-nucleosome interactions, thereby destabilizing chromatin structure and increasing the access of DNA to various DNA-binding proteins (4,5). In addition, acetylation of specific lysine residues creates docking sites that facilitate recruitment of many transcription and chromatin regulatory proteins that contain a bromodomain, which binds to acetylated lysine residues (6). Histone H2B is mono-ubiquitinated at Lys120 during transcriptional activation by the RAD6 E2 protein in conjunction with the BRE1A/BRE1B E3 ligase (also known as RNF20/RNF40) (7). Mono-ubiquitinated histone H2B Lys120 is associated with the transcribed region of active genes and stimulates transcriptional elongation by facilitating FACT-dependent chromatin remodeling (7-9). In addition, it is essential for subsequent methylation of histone H3 Lys4 and Lys79, two additional histone modifications that regulate transcriptional initiation and elongation (10). In response to metabolic stress, AMPK is recruited to responsive genes and phosphorylates histone H2B at Lys36, both at promoters and in transcribed regions of genes, and may regulate transcriptional elongation (11). In response to multiple apoptotic stimuli, histone H2B is phosphorylated at Ser14 by the Mst1 kinase (12). Upon induction of apoptosis, Mst1 is cleaved and activated by caspase-3, leading to global phosphorylation of histone H2B during chromatin condensation. Interestingly, histone H2B is rapidly phosphorylated at irradiation-induced DNA damage foci in mouse embryonic fibroblasts (13). In this case, phosphorylation at Ser14 is rapid, depends on prior phosphorylation of H2AX Ser139, and occurs in the absence of apoptosis, suggesting that Ser14 phosphorylation may have distinct roles in DNA-damage repair and apoptosis.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: PICH is a helicase of the SNF2 family of ATPases and is essential for proper chromosome segregation during mitosis (1). While PICH was originally proposed to participate in spindle assembly checkpoint signaling (1), that function was subsequently called into question (2). When phosphorylated at Thr1063 by CDK1, PICH binds the polo-box domain of the mitotic kinase PLK1 (1) and targets it to chromosome arms (3), where it appears to facilitate proper chromosome arm cohesion (4). PICH is also a substrate of PLK1 (1). Localized to the cytoplasm during interphase, PICH begins to accumulate at centromeres and kinetochores in prometaphase (4). As chromosomes begin to separate at the onset of anaphase, PICH associates with ultrafine threads between sister centromeres thought to be composed of entangled DNA (5), a natural consequence of DNA replication. PICH is proposed to cooperate with BLM, a RecQ-like helicase implicated in the genetic disorder Bloom’s Syndrome, to displace centromeric histones along these threads, thus enabling them to span large distances without breaking (6). This provides a temporal window for topoisomerase IIα-mediated disentanglement (7). Defects in PICH or BLM disrupt proper chromatid segregation and result in the formation of micronuclei (6).

$260
100 µl
REACTIVITY
Human

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Musashi-1 and Musashi-2 are RNA-binding proteins which play a role in asymmetric cell division of ectodermal precursor cells by regulating the translation of target mRNA. Both family members augment Notch signaling and repress the translation of m-Numb, a protein that positively modulates differentiation of neural stem cells into neurons. Thus, Musashi contributes to the maintenance of neural stem cells (1). While Musashi-1 is frequently used as a marker for proliferating neural precursor cells, it is also expressed in epithelial stem cells including intestinal and mammary gland stem cells (2-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Apoptosis repressor with caspase recruitment domain (ARC), also independently identified as muscle-enriched cytoplasmic protein (MYP), is a CARD domain protein that regulates apoptosis (1). The ARC protein CARD domain is highly homologous to those in other cell death regulators, including caspase-2, caspase-9, RAIDD, and Apaf-1 (2). The NOL3 gene encodes both the cytoplasmic ARC protein and a 30 kDa nucleolar protein (Nop30) that is involved in RNA splicing. ARC is encoded from isoform 2 of NOL3, while isoform 1 produced by alternative splicing encodes Nop30. Both ARC and Nop30 proteins share common amino-terminal sequences (3). Research studies show that ARC can bind to caspase-8 and caspase-2 and inhibit apoptosis through extrinsic pathways that involve the receptor proteins Fas, TNFR1, and DR3 (1). Additional research indicates that the ARC anti-apoptotic mechanism may include both intrinsic (mitochondrial) and extrinsic (death receptor) pathways (4). In addition to binding caspases, ARC can disrupt the interaction with the death domains of Fas and FADD, which inhibits death-inducing signaling complex (DISC) assembly. The CARD domain of ARC can inhibit intrinsic apoptosis through binding to the pro-apoptotic Bax protein (5). Phosphorylation of ARC at Thr149 by CK2 is required for targeting of ARC to the mitochondria (6). ARC is able to suppress necroptosis, a programmed pathway of necrosis triggered by blocking the recruitment of RIP1 to TNFR1 (7). Expression of ARC protein is predominantly seen in terminally differentiated cells under normal conditions and is markedly induced in a variety of cancers including pancreatic, colorectal, breast, lung, glioblastoma, liver, kidney, melanoma, and acute myeloid leukemia (1, 8-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Cool/Pix proteins comprise a family of guanine nucleotide exchange factors (GEFs) localized to focal adhesions. The family consists of two isoforms, cool2/αPix and cool1/βPix, the latter having two splice variants that vary in their carboxy termini (1). Cool2/αPix, like other GEFs, has a DH (Dbl homology) domain, which allows binding of small GTPases and GDP/GTP exchange, and a PH (Pleckstrin homology) domain (2).X-chromosomal genes mutated in nonspecific mental retardation (MRX) comprise a family of genes, including the gene encoding Cool2/αPix, thought to be involved in mental retardation (3,4).Cool2/αPix interacts with β-parvin/affixin, a protein involved in integrin signaling (5), and may act downstream of integrin-linked kinase (ILK) to regulate actin reorganization and cell spreading (6).When Cool2αPix exists as a dimer, it functions as a Rac-specific GEF, whereas the monomeric protein acts as a GEF for both Rac and Cdc42. Regulation of Cool2/αPix dimerization, and therefore its specificity, occurs at least in part through p21 activated kinase (PAK) in response to extracellular signaling (7). Further, binding of Cdc42 enhances the Rac GEF activity of the Cool2/αPix dimer. Activated Rac in turn inhibits Cool2/αPix Rac GEF activity (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: MAP kinase kinase kinase (MEKK3 or MAP3K3) is a serine/threonine protein kinase that activates SAPK and ERK via phosphorylation and activation of their respective MAP kinase kinases, SEK and MEK1/2 (1,2). MEKK3 also stimulates MEK5 via activation of ERK5/BMK1, which is at least partly regulated by a direct interaction between MEK5 and MEKK3 via p67phox-Bem1p (PB1) protein-protein interaction domains found in both proteins (3,4). MEKK3 modulates NF-κB activation in response to a variety of agonists including TNFα, LPS, IL-1 and LPA (5-9). Despite reports showing that phosphorylation of MEKK3 at Ser526 within the activation loop is necessary for kinase activation (10-12), at least one study suggests that dual phosphorylation at Thr516 and Ser520 is required for LPA-stimulated IKKβ/NF-κB activation (13). Phosphorylation at Thr294 appears to negatively regulate MEKK3 by promoting 14-3-3β binding and inhibition of the kinase activity (12). Phosphorylation of MEKK3 at Thr294 is diminished upon treatment of cells with LPS or TNFα, further suggesting an inhibitory role for this site (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The NDRG (N-Myc downstream-regulated gene) family consisting of NDRG1, NDRG2, NDRG3, and NDRG4 are structurally related proteins with roles in cell proliferation, differentiation, apoptosis, stress responses, and cell migration/metastasis (1-3). NDRG1 was originally identified as a protein that was upregulated in N-Myc knockout mice (1). Proteins in the NDRG family, particularly NDRG1 and NDRG2, have been reported to be down-regulated in various cancer tissues and have been suggested to function as a tumor suppressors (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: TRAFs (TNF receptor-associated factors) are a family of multifunctional adaptor proteins that bind to surface receptors and recruit additional proteins to form multiprotein signaling complexes capable of promoting cellular responses (1-3). Members of the TRAF family share a common carboxy-terminal "TRAF domain", which mediates interactions with associated proteins; many also contain amino-terminal Zinc/RING finger motifs. The first TRAFs identified, TRAF1 and TRAF2, were found by virtue of their interactions with the cytoplasmic domain of TNF-receptor 2 (TNFRII) (4). The six known TRAFs (TRAF1-6) act as adaptor proteins for a wide range of cell surface receptors and participate in the regulation of cell survival, proliferation, differentiation, and stress responses.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Axin1 (Axis inhibition protein 1) and Axin2 are multidomain scaffold proteins that negatively regulate Wnt signaling. Axin1 interacts with APC, GSK-3β, Dvl, and β-catenin and promotes the GSK-3β-mediated phosphorylation and subsequent degradation of β-catenin (1,2). Upon stimulation of cells with Wnt, Axin1 is recruited to the membrane by phosphorylated LRP5/6, a process that is believed to be crucial for activation of Wnt signaling (3,4). In addition to its role in the Wnt signaling pathway, Axin1 forms a complex with MEKK1 and activates c-Jun amino-terminal kinase (JNK/SAPK) (5). Axin2 (also known as Conductin or Axil) can functionally substitute for Axin1 in mice (6). Axin2 itself is a direct target of the Wnt signaling pathway and therefore serves to control the duration and/or intensity of Wnt signaling through a negative feedback loop (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin)

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Western Blotting

Background: Liver X receptors LXR-α and LXR-β are nuclear hormone receptor superfamily members responsible for regulating expression of target genes that control cholesterol transport and metabolism (1). When bound by the oxidized derivatives of cholesterol (oxysterols), activated LXR receptors function as sterol sensors to regulate transcription of the genes involved in the cholesterol homeostasis (1,2). The LXR-α protein is expressed at high levels in rat liver, kidney, intestine, adipose, and spleen; LXR-β is more ubiquitously expressed within rat tissues (1,3). Research studies indicate that glucose binds and up-regulates the transcriptional activity of LXR-α and LXR-β (4). LXR-α and LXR-β are putative glucose sensors that integrate glucose metabolism and fatty acid biosynthesis in the liver (4). Additional studies show that female mice deficient in LXR-β develop gallbladder cancer (5). In addition, LXR-β plays a role in protecting dopaminergic neurons in a Parkinson disease model (6).