Microsize antibodies for $99 | Learn More >>

Product listing: β-Tubulin (9F3) Rabbit mAb (Alexa Fluor® 594 Conjugate), UniProt ID P07437 #7634 to CD46 (D6N7H) Rabbit mAb, UniProt ID P15529 #13241

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for direct immunofluorescent analysis in mouse cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated β-Tubulin (9F3) Rabbit mAb #2128.
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: The cytoskeleton consists of three types of cytosolic fibers: microtubules, microfilaments (actin filaments), and intermediate filaments. Globular tubulin subunits comprise the microtubule building block, with α/β-tubulin heterodimers forming the tubulin subunit common to all eukaryotic cells. γ-tubulin is required to nucleate polymerization of tubulin subunits to form microtubule polymers. Many cell movements are mediated by microtubule action, including the beating of cilia and flagella, cytoplasmic transport of membrane vesicles, chromosome alignment during meiosis/mitosis, and nerve-cell axon migration. These movements result from competitive microtubule polymerization and depolymerization or through the actions of microtubule motor proteins (1).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The Forkhead family of transcription factors is involved in tumorigenesis of rhabdomyosarcoma and acute leukemias (1-3). Within the family, three members (FoxO1, FoxO4, and FoxO3a) have sequence similarity to the nematode orthologue DAF-16, which mediates signaling via a pathway involving IGFR1, PI3K, and Akt (4-6). Active forkhead members act as tumor suppressors by promoting cell cycle arrest and apoptosis. Increased expression of any FoxO member results in the activation of the cell cycle inhibitor p27 Kip1. Forkhead transcription factors also play a part in TGF-β-mediated upregulation of p21 Cip1, a process negatively regulated through PI3K (7). Increased proliferation results when forkhead transcription factors are inactivated through phosphorylation by Akt at Thr24, Ser256, and Ser319, which results in nuclear export and inhibition of transcription factor activity (8). Forkhead transcription factors can also be inhibited by the deacetylase sirtuin (SirT1) (9).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. Major types of intermediate filaments are distinguished by their cell-specific expression: cytokeratins (epithelial cells), glial fibrillary acidic protein (GFAP) (glial cells), desmin (skeletal, visceral, and certain vascular smooth muscle cells), vimentin (mesenchyme origin), and neurofilaments (neurons). GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape (1). In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes (2). Research studies have shown that vimentin is present in sarcomas, but not carcinomas, and its expression is examined in conjunction with that of other markers to distinguish between the two (3). Vimentin's dynamic structural changes and spatial re-organization in response to extracellular stimuli help to coordinate various signaling pathways (4). Phosphorylation of vimentin at Ser56 in smooth muscle cells regulates the structural arrangement of vimentin filaments in response to serotonin (5,6). Remodeling of vimentin and other intermediate filaments is important during lymphocyte adhesion and migration through the endothelium (7).During mitosis, CDK1 phosphorylates vimentin at Ser56. This phosphorylation provides a PLK binding site for vimentin-PLK interaction. PLK further phosphorylates vimentin at Ser82, which might serve as memory phosphorylation site and play a regulatory role in vimentin filament disassembly (8,9). Additionally, studies using various soft-tissue sarcoma cells have shown that phosphorylation of vimentin at Ser39 by Akt1 enhances cell migration and survival, suggesting that vimentin could be a potential target for soft-tissue sarcoma targeted therapy (10,11).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Members of the Janus family of tyrosine kinases (Jak1, Jak2, Jak3, and Tyk2) are activated by ligands binding to a number of associated cytokine receptors (1). Upon cytokine receptor activation, Jak proteins become autophosphorylated and phosphorylate their associated receptors to provide multiple binding sites for signaling proteins. These associated signaling proteins, such as Stats (2), Shc (3), insulin receptor substrates (4), and focal adhesion kinase (FAK) (5), typically contain SH2 or other phospho-tyrosine-binding domains.

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Chk2 is the mammalian orthologue of the budding yeast Rad53 and fission yeast Cds1 checkpoint kinases (1-3). The amino-terminal domain of Chk2 contains a series of seven serine or threonine residues (Ser19, Thr26, Ser28, Ser33, Ser35, Ser50, and Thr68) each followed by glutamine (SQ or TQ motif). These are known to be preferred sites for phosphorylation by ATM/ATR kinases (4,5). After DNA damage by ionizing radiation (IR), UV irradiation, or hydroxyurea treatment, Thr68 and other sites in this region become phosphorylated by ATM/ATR (5-7). The SQ/TQ cluster domain, therefore, seems to have a regulatory function. Phosphorylation at Thr68 is a prerequisite for the subsequent activation step, which is attributable to autophosphorylation of Chk2 at residues Thr383 and Thr387 in the activation loop of the kinase domain (8).

$303
400 µl
This Cell Signaling Technology antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated sepharose beads. Phospho-MAPK/CDK Substrates (PXS*P or S*PXR/K) (34B2) Rabbit mAb (Sepharose Bead Conjugate) is useful for the immunoprecipitation of Phospho-MAPK/CDK Substrates (PXS*P or S*PXR/K). The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-MAPK/CDK Substrates (PXS*P or S*PXR/K) (34B2) Rabbit mAb #2325.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Immunoprecipitation

Background: The MAPK and CDK families of serine/threonine protein kinases play important roles in proliferation and cell cycle control. These kinases phosphorylate threonine or serine followed by a proline residue (1-3). MAPK phosphorylates substrates with the consensus sequence PX(S/T)P, and CDKs phosphorylate substrates containing the consensus sequence (S/T)PXR/K. Cell Signaling Technology has developed antibodies that bind to phospho-threonine followed by proline, motifs PXS*/T*P and/or S*PXR/K, for use in the study and discovery of new MAPK and CDK substrates (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 90 kDa ribosomal S6 kinases (RSK1-4) are a family of widely expressed Ser/Thr kinases characterized by two nonidentical, functional kinase domains (1) and a carboxy-terminal docking site for extracellular signal-regulated kinases (ERKs) (2). Several sites both within and outside of the RSK kinase domain, including Ser380, Thr359, Ser363, and Thr573, are important for kinase activation (3). RSK1-3 are activated via coordinated phosphorylation by MAPKs, autophosphorylation, and phosphoinositide-3-OH kinase (PI3K) in response to many growth factors, polypeptide hormones, and neurotransmitters (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Dopamine β-Hydroxylase (DBH) is an enzyme of the copper type II ascorbate-dependent mono-oxygenase family. This enzyme forms homotetramers composed of two noncovalently bound disulfide-linked dimers and is found as both membrane-associated and soluble forms (1-3). The soluble form is present in the lumen of secretory granules (4) and is released from cells by exocytosis (5). DBH converts dopamine to noradrenaline (6). Deficiency in this enzyme causes a rare disease characterized by a complete absence of noradrenaline and adrenaline in plasma together with increased plasma dopamine levels (7). Orthostatic hypotension, the main symptom of DBH deficiency, can be alleviated by administration of dihydroxyphenylserine, a synthetic precursor of noradrenaline (8).

$305
100 µl
This Cell Signaling Technology (CST) antibody is conjugated to biotin under optimal conditions. The unconjugated GAPDH (14C10) Rabbit mAb #2118 reacts with human, mouse, rat and monkey GAPDH. CST expects that GAPDH (14C10) Rabbit mAb (Biotinylated) will also recognize GAPDH in these species.
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Pig, Rat

Application Methods: Western Blotting

Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the phosphorylation of glyceraldehyde-3-phosphate during glycolysis. Though differentially expressed from tissue to tissue (1), GAPDH is thought to be a constitutively expressed housekeeping protein. For this reason, GAPDH mRNA and protein levels are often measured as controls in experiments quantifying specific changes in expression of other targets. Recent work has elucidated roles for GAPDH in apoptosis (2), gene expression (3), and nuclear transport (4). GAPDH may also play a role in neurodegenerative pathologies such as Huntington and Alzheimer's diseases (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in monkey cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated p21 Waf1/Cip1 (12D1) Rabbit mAb #2947.
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: The tumor suppressor protein p21 Waf1/Cip1 acts as an inhibitor of cell cycle progression. It functions in stoichiometric relationships forming heterotrimeric complexes with cyclins and cyclin-dependent kinases. In association with CDK2 complexes, it serves to inhibit kinase activity and block progression through G1/S (1). However, p21 may also enhance assembly and activity in complexes of CDK4 or CDK6 and cyclin D (2). The carboxy-terminal region of p21 is sufficient to bind and inhibit PCNA, a subunit of DNA polymerase, and may coordinate DNA replication with cell cycle progression (3). Upon UV damage or during cell cycle stages when cdc2/cyclin B or CDK2/cyclin A are active, p53 is phosphorylated and upregulates p21 transcription via a p53-responsive element (4). Protein levels of p21 are downregulated through ubiquitination and proteasomal degradation (5).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The α isoform of protein phosphatase 2C (PP2C-α) is the catalytic subunit of a widely expressed serine/threonine phosphatase involved in regulation of the cell stress response (1,2). Also known as magnesium-dependent protein phosphatase (PPM1A), this monomeric phosphatase is a member of a conserved group of proteins that acts on many different substrates in numerous pathways. PP2C-α inhibits p38 MAPK and SAPK/JNK pathways activated in response to cell stress as seen in both in vivo and in vitro studies. Specifically, PP2C-α removes phosphates from MKK3 and MKK7, reducing activity of both proteins and inhibiting activation of the downstream kinases JNK and p38 MAPK, respectively (3). Another PP2C-α substrate is IKKβ, the critical regulator of NF-κB signaling. Dephosphorylation of IKKβ at Ser177/181 by PPM1A and PPM1B results in inactivation of IKKβ and inhibition of NF-κB signaling (4). PP2C-α is one of the phosphatases responsible for removing phosphate residues from cyclin dependent protein kinases. In a study using HeLa cell extracts, PP2C-α dephospohrylates CDK2 and CDK6, with a preference toward interacting with CDK2 phosphorylated at Thr160, a residue found in the activating T-loop of the kinase. Removal of phosphates from this site is thought to inactivate cyclin-associated kinases (5). PP2C-α induces cell cycle arrest and apoptosis, likely through activation of p53 though other pathways may also contribute to PP2C-α mediated cell death (6). Additional PP2C-α substrates include the Wnt signaling pathway protein axin (7) and CFTR, a chloride channel protein implicated in cystic fibrosis (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Western Blotting

Background: Cdc25 is a protein phosphatase responsible for dephosphorylating and activating cdc2, a crucial step in regulating the entry of all eukaryotic cells into mitosis (1). cdc25C is constitutively phosphorylated at Ser216 throughout interphase by c-TAK1, while phosphorylation at this site is DNA damage-dependent at the G2/M checkpoint (2). When phosphorylated at Ser216, cdc25C binds to members of the 14-3-3 family of proteins, sequestering cdc25C in the cytoplasm and thereby preventing premature mitosis (3). The checkpoint kinases Chk1 and Chk2 phosphorylate cdc25C at Ser216 in response to DNA damage (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis of human cells. The unconjugated antibody #2966 reacts with human, mouse, rat and hamster Akt protein. CST expects that Akt (5G3) Mouse mAb (Alexa Fluor® 488 Conjugate) will also recognize Akt in these species.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$303
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Tyrosine Mouse mAb (P-Tyr-100) #9411.
APPLICATIONS
REACTIVITY
All Species Expected, Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Tyrosine phosphorylation plays a key role in cellular signaling (1). Research studies have shown that in cancer, unregulated tyrosine kinase activity can drive malignancy and tumor formation by generating inappropriate proliferation and survival signals (2). Antibodies specific for phospho-tyrosine (3,4) have been invaluable reagents in these studies. The phospho-tyrosine monoclonal antibodies developed by Cell Signaling Technology are exceptionally sensitive tools for studying tyrosine phosphorylation and monitoring tyrosine kinase activity in high throughput drug discovery.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Late endosomal/lysosomal adaptor and MAPK and MTOR activator 4 (LAMTOR4) is an essential component of the ragulator protein complex that is encoded by the C7orf59 gene (1). The ragulator complex also includes LAMTOR1/C11orf59, LAMTOR2/ROBLD3, LAMTOR3/MAPKSP1, and HBXIP (1,2). This pentameric protein complex localizes to the lysosomal membrane and is essential for the lysosomal localization of Rag GTPases and mTORC1 as well as the subsequent activation of mTORC1 in response to amino acid signaling (1-3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The ubiquitin fusion degradation 1 (UFD1) adaptor protein is a component of a protein complex essential for degradation of misfolded proteins by the endoplasmic reticulum-associated protein degradation (ERAD) pathway (1). The UFD1 protein contains a pair of conserved, amino-terminal ubiquitin-binding sites responsible for binding mono- and polyubiquitin molecules (2,3). The carboxy-terminal region of UFD1 contains binding sites for both the adapter protein NPL4 and the AAA ATPase VCP (4). The UFD1-NPL4 heterodimer binds VCP to create a protein complex responsible for export of misfolded proteins from the ER to the cytoplasm for ubiquitin-mediated degradation (5-7). The same protein complex may also be involved in disassembly of the spindle apparatus following mitosis (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: There are three members of the steroid receptor co-activator (SRC) family of proteins: SRC-1 (NCoA-1), SRC-2 (TIF2/GRIP1/NCoA-2), and SRC-3 (ACTR/pCIP/RAC3/TRAM-1/AIB1). All SRC family members share significant structural homology and function to stimulate transcription mediated by nuclear hormone receptors and other transcriptional activators such as Stat3, NF-κB, E2F1, and p53 (1-4). Two SRC proteins, SRC-1 and SRC-3, function as histone acetyltransferases (5,6). In addition, all three family members can recruit other histone acetyltransferases (CBP/p300, PCAF) and histone methyltransferases (PRMT1, CARM1) to target promoters and cooperate to enhance expression of many genes (5-8). The SRC proteins play important roles in multiple physiological processes including cell proliferation, cell survival, somatic cell growth, mammary gland development, female reproductive function, and vasoprotection (9). SRC-1 and SRC-3 are conduits for kinase-mediated growth factor signaling to the estrogen receptor and other transcriptional activators. Seven SRC-1 phosphorylation sites and six SRC-3 phosphorylation sites have been identified, which are induced by steroids, cytokines, and growth factors and involve multiple kinase signaling pathways (9-11). Research has shown that all three SRC family members are associated with increased activity of nuclear receptors in breast, prostate, and ovarian carcinomas. According to the literature, SRC-3 is frequently amplified or overexpressed in a number of cancers (12), and SRC-1/PAX3 and SRC-2/MYST3 translocations are found associated with rhabdomyosarcoma and acute myeloid leukemia, respectively (13,14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: Negative Elongation Factor (NELF) consists of four subunits: WHSC2 (NELF-A), COBRA-1 (NELF-B), TH1L (NELF-C/D), and NELF-E (1). NELF, together with DRB-sensitivity inducing factor (DSIF), inhibits RNA Polymerase II (RNAPII) elongation resulting in RNAPII promoter proximal pausing, where it waits additional signaling to resume transcription (2,3). The release of RNAPII from promoter proximal pausing is a critical regulatory point during transcription and is signaled by positive transcription elongation factor (p-TEF-b) phosphorylation of both NELF and the carboxy-terminal domain (CTD) within the largest subunit of RNAPII (3,4). WHSC2 is thought to connect the NELF complex to RNAPII machinery, while NELF-E contains an RNA binding motif that is necessary for NELF function (1,5,6). TH1L, together with COBRA-1, are integral subunits that bring WHSC2 and NELF-E together in the NELF complex (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: TBC1D1 is a paralog of AS160 (1) and both proteins share about 50% identity (2). TBC1D1 was shown to be a candidate gene for severe obesity (3). It plays a role in Glut4 translocation through its GAP activity (2,4). Studies indicate that TBC1D1 is highly expressed in skeletal muscle (1). Insulin, AICAR, and contraction directly regulate TBC1D1 phosphorylation in this tissue (1). Three AMPK phosphorylation sites (Ser231, Ser660, and Ser700) and one Akt phosphorylation site (Thr590) were identified in skeletal muscle (5). Muscle contraction or AICAR treatment increases phosphorylation on Ser231, Ser660, and Ser700 but not on Thr590; insulin increases phosphorylation on Thr590 only (5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated mTOR (7C10) Rabbit mAb #2983.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: The mammalian target of rapamycin (mTOR, FRAP, RAFT) is a Ser/Thr protein kinase (1-3) that functions as an ATP and amino acid sensor to balance nutrient availability and cell growth (4,5). When sufficient nutrients are available, mTOR responds to a phosphatidic acid-mediated signal to transmit a positive signal to p70 S6 kinase and participate in the inactivation of the eIF4E inhibitor, 4E-BP1 (6). These events result in the translation of specific mRNA subpopulations. mTOR is phosphorylated at Ser2448 via the PI3 kinase/Akt signaling pathway and autophosphorylated at Ser2481 (7,8). mTOR plays a key role in cell growth and homeostasis and may be abnormally regulated in tumors. For these reasons, mTOR is currently under investigation as a potential target for anti-cancer therapy (9).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated BrdU (Bu20a) Mouse mAb #5292.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Flow Cytometry

Background: Halogenated nucleotides such as the pyrimidine analog bromodeoxyuridine (BrdU) are useful for labeling nascent DNA in living cells and tissues. BrdU becomes incorporated into replicating DNA in place of thymidine and subsequent immunodetection of BrdU using specific monoclonal antibodies allows labeling of cells in S phase of the cell cycle. After pulse-labeling cells or tissues with bromodeoxyuridine, BrdU (Bu20a) Mouse mAb can be used to detect BrdU incorporated into single stranded DNA. Please see our detailed protocol for information regarding the labeling procedure and denaturation of double stranded DNA for various immunodetection applications (1-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Nitric Oxide Synthase (NOS) catalyzes the formation of nitric oxide (NO) and citruline from L-arginine, oxygen and cofactors. Three family members have been characterized: neuronal NOS (nNOS), which is found primarily in neuronal tissue; inducible NOS (iNOS), which is induced by interferon gamma and lipopolysaccharides in the kidney and cardiovascular system; and endothelial NOS (eNOS), which is expressed in blood vessels (1). NO is a messenger molecule with diverse functions throughout the body including the maintenance of vascular integrity, homeostasis, synaptic plasticity, long-term potentiation, learning, and memory (2,3).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: PBK/TOPK is a serine/threonine kinase that is phosphorylated and active during mitosis (1). PBK/TOPK is composed of kinase subdomains and a carboxy-terminal PDZ-Binding domain, which is thought to interact with the tumor suppressor protein hDlg (1). Increased PBK/TOPK expression has been observed in highly proliferative malignant cell lines, and PBK/TOPK expression is strongly downregulated during terminal differentiation of HL-60 leukemic cells (2,3). PMA-induced kinase activity toward PBK/TOPK has been observed (4), and cdc2/cyclinB has been shown to phosphorylate PBK/TOPK in vitro, presumably at Thr9 (1). Potential substrates of PBK/TOPK include p38 MAPK and c-Myc (3,4).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin)

Background: Podoplanin (aggrus, glycoprotein 36) is a single-pass transmembrane protein belonging to the type-1 family of sialomucin-like glycoproteins. Podoplanin was first described in the rat as a surface glycoprotein that regulated podocyte morphology (1). It is now commonly used as a marker of lymphatic endothelial cells, where its expression is associated with the process of lymphangiogenesis (2). Its role in this regard is presumably due to its putative involvement in regulating actin cytoskeleton dynamics (3). Research studies have shown that podoplanin expression is upregulated in a number of tumor types including colorectal cancers (4), oral squamous cell carcinomas (5), and germ cell tumors (6), with higher expression levels often associated with more aggressive tumors (7). Research studies have suggested a functional role for podoplanin in the stromal microenvironment of tumors. For example, it has been reported that podoplanin expression in cancer-associated fibroblasts (CAFs) is positively associated with a stromal environment that promotes cancer progression (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Nonmuscle myosin is an actin-based motor protein essential to cell motility, cell division, migration, adhesion, and polarity. The holoenzyme consists of two identical heavy chains and two sets of light chains. The light chains (MLCs) regulate myosin II activity and stability. The heavy chains (NMHCs) are encoded by three genes, MYH9, MYH10, and MYH14, which generate three different nonmuscle myosin II isoforms, IIa, IIb, and IIc, respectively (reviewed in 1). While all three isoforms perform the same enzymatic tasks, binding to and contracting actin filaments coupled to ATP hydrolysis, their cellular functions do not appear to be redundant and they have different subcellular distributions (2-5). The carboxy-terminal tail domain of myosin II is important in isoform-specific subcellular localization (6). Research studies have shown that phosphorylation of myosin IIa at Ser1943 contributes to the regulation of breast cancer cell migration (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: SynGAP is a synaptic GTPase-activating protein selectively expressed in the brain and found at higher concentrations specifically at excitatory synapses in the mammalian forebrain. SynGAP has a PH domain, a C2 domain, and a highly conserved RasGAP domain, which negatively regulates both Ras activity and its downstream signaling pathways. SynGAP interacts with the PDZ domains of SAP102, as well as PSD95, a postsynaptic scaffolding protein that couples SynGAP to NMDA receptors (1). SynGAP is phosphorylated by Ca2+/calmodulin-dependent protein kinase II (CaMKII) at Ser765 and Ser1123, among other sites (2,3). Phosphorylation of SynGAP results in stimulation of the GTPase activity of Ras, and PSD95 dependent CaMKII phosphorylation of SynGAP increases after transient brain ischemia (1,4). SynGAP is implicated in NMDAR- and CaMKII-dependent regulation of AMPAR trafficking and plays an important role in synaptic plasticity (3,5). SynGAP is critical during neuronal development as mice lacking SynGAP protein die postnatally. Furthermore, SynGAP mutant mice have reduced long-term potentiation (LTP) and perform poorly in spatial memory tasks (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Mitochondria continuously divide and fuse. This dynamic process is highly regulated in response to various physiological cues (1,2). The GTPase OPA1 mediates the fusion of the mitochondrial inner membrane. Constitutive proteolytic processes mediated by OMA1 (S1 site) and YME1L (S2 site) convert long isoforms (L-OPA1) into short isforms (S-OPA1). The balance between L-OPA1 and S-OPA1 is required to maintain a normal morphology of mitochondria (3,4).OMA1 is synthesized as a precursor and processed into a mature form (5,6). OMA1 is constitutively active and cleaves L-OPA1 at the S1 site. However, various stress stimuli can further activate OMA1 and result in the rapid and complete conversion of L-OPA1 into S-OPA1, which inhibits fusion and causes mitochondrial fragmentation (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: ETO belongs to a family of evolutionarily conserved nuclear factors. Although it has no DNA binding domains it is reported to act as a transcriptional corepressor (1). It is best characterized as the fusion partner of AML1 in acute myeloid leukemia with the t(8;21) translocation which gives rise to the AML-ETO fusion protein (2). AML1 is a transcription factor that is involved in the differentiation of all hematopoietic lineages. The fusion protein lacks the activation domain of AML1 and behaves as a dominant negative AML1, repressing AML1 target genes. AML-ETO also causes activation of other genes through a mechanism that involves Bcl-2 and enhanced expression of p21 waf1/cip1 (3,4). The AML-ETO fusion protein is thought to cause the expansion of a hematopoietic stem cell population that has limited lineage commitment and genomic instability (5). Recent evidence derived from chromatin immunoprecipitation (ChIP) experiments has demonstrated that ETO may play a role in the regulation of Notch target genes, and AML-ETO has been shown to disrupt repression of Notch target genes (6). Therefore, both AML and Notch target genes are deregulated by AML-ETO. Epigenetic silencing of the microRNA-223 gene has also been attributed to activities of AML-ETO, contributing to the differentiation block in t(8;21) leukemia (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Angiotensinogen (AGT) is the primary precursor of angiotensins, peptide hormones that play a central role in the renin-angiotensin system (RAS) (1-3). AGT is a secreted protein synthesized primarily by the liver and secreted into circulation. Upon binding to renin, the amino terminal fragment of AGT is cleaved and released as a decapeptide hormone termed angiotensin 1 (Ang I). Ang I is subsequently processed by angiotensin converting enzyme (ACE) to generate angiotensin II (Ang II), which acts on AT1 and AT2 receptors in the central nervous system to increase production of anti-diuretic hormone (ADH), while promoting vasoconstriction in the peripheral circulation (4). Aberrant upregulation of Ang II has been associated with numerous clinical conditions, including hypertension, atherosclerosis, myocardial hypertrophy, and obesity (5-7). Alternative cleavage products of Ang I (e.g., Ang 1-7) can also be generated by ACE2 cleavage, some of which display biological functions that are distinct from Ang II (8). Treatments that target the RAS (e.g., ACE inhibitors) are consequently of significant importance in the treatment of hypertensive and hypertensive-related disorders(5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Complement Regulatory Protein; Membrane Cofactor Protein (CD46) is a type 1 membrane protein that plays an important inhibitory role in the complement system (1). CD46 exhibits a cofactor activity that promotes inactivation of C3b and C4b by serum factor 1, thereby protecting host (self) cells from complement-dependent cytotoxicity (1,2). The importance of CD46 to complement regulation is underscored by the observation that genetic loss of CD46 leads to development of atypical hemolytic-uremic syndrome (aHUS), a disease characterized by uncontrolled complement activation (2,3). In addition to its role in complement inactivation, CD46 can function as a receptor for selected bacteria and viruses (4), and is reportedly required for proper fusion of spermatozoa to the oocyte membrane during fertilization (5). CD46 is implicated in the development and/or progression of selected cancer types. For example, research studies show elevated CD46 expression in medulloblastoma tumor samples (6), while CD46 expression has been linked with poor prognosis in breast cancer (7). It has been suggested that upregulation of CD46 may serve to protect cancer cells from complement-dependent cytotoxicity, thereby evading destruction by the immune system (8,9).