Interested in promotions? | Click here >>

Product listing: INPP4b Antibody, UniProt ID O15327 #4039 to Hippo Pathway: Upstream Signaling Antibody Sampler Kit, UniProt ID P35240 #56612

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Western Blotting

Background: Phosphatidylinositol lipids and phosphoinositides are important second messengers, their generation controlling many cellular events. Intracellular levels of these molecules are regulated by phosphoinositide kinases and phosphatases. One of the best characterized lipid kinases is phosphoinositide 3-kinase (PI3K), which is responsible for phosphorylation on the D-3 position of the inositide head group (1). This action of PI3K catalyzes the production of phosphatidylinositol-3,4,5-triphosphate by phosphorylating phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2). Growth factors and hormones trigger this phosphorylation event, which in turn coordinates cell growth, cell cycle entry, cell migration, and cell survival (1). PTEN, the well characterized partnering phosphatase, reverses this process by removing the phosphate from PI(3,4,5)P3 at the D-3 position to generate PI(4,5)P2 (1,2). Dephosphorylation on the D-5 position to generate PI(3,4)P2 occurs through the action of SHIP1 or SHIP2 (3), and dephosphorylation on the D-4 position to generate PI(3)P can occur through the action of inositol polyphosphate 4-phosphatase isoenzymes type I (INPP4a) and type II (INPP4b) (4,5). While INPP4a has been implicated in neuronal survival and megakaryocyte lineage determination (6,7), less is understood about INPP4b. It has been shown that two splice variants of INPP4b occur in mice, each showing distinct tissue distribution and subcellular localization (5,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Smac/Diablo is a 21 kDa mammalian mitochondrial protein that functions as a regulatory component during apoptosis (1,2). Upon mitochondrial stress, Smac/Diablo is released from mitochondria and competes with caspases for binding of IAPs (inhibitor of apoptosis proteins) (1,2). The interaction of Smac/Diablo with IAPs relieves the inhibitory effect of the IAPs on caspases (3,4). This interaction involves mainly the amino-terminal residues of Smac/Diablo with the BIR3 region of XIAP, supplemented with several other hydrophobic interactions between the helical structures of Smac/Diablo and other areas of BIR3 (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Endophilin proteins are part of a large family of Bin/Amphiphysin/Rvs (BAR) domain proteins that are involved in cell membrane remodeling (1). The endophilins are encoded by five genes, which produce endophilin A 1-3 and B 1-2 (2). Endophilins are involved in many cellular mechanisms, such as synaptic vesicle recycling, receptor trafficking, and membrane remodeling processes (2). Research studies indicate that endophilin 1 (endophilin A1, SH3GL2) can induce different membrane shapes (3) and participate in the morphogenesis of dendritic spines (4). Endophilin 1 is also involved in regulating blood brain barrier permeability via the EGFR-JNK pathway (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The minichromosome maintenance (MCM) 2-7 proteins are a family of six related proteins required for initiation and elongation of DNA replication. MCM2-7 bind together to form the heterohexameric MCM complex that is thought to act as a replicative helicase at the DNA replication fork (1-5). This complex is a key component of the pre-replication complex (pre-RC) (reviewed in 1). Cdc6 and CDT1 recruit the MCM complex to the origin recognition complex (ORC) during late mitosis/early G1 phase forming the pre-RC and licensing the DNA for replication (reviewed in 2). Licensing of the chromatin permits the DNA to replicate only once per cell cycle, thereby helping to ensure that genetic alterations and malignant cell growth do not occur (reviewed in 3). Phosphorylation of the MCM2, MCM3, MCM4, and MCM6 subunits appears to regulate MCM complex activity and the initiation of DNA synthesis (6-8). CDK1 phosphorylation of MCM3 at Ser112 during late mitosis/early G1 phase has been shown to initiate complex formation and chromatin loading in vitro (8). Phosphorylation of MCM2 at serine 139 by cdc7/dbf4 coincides with the initiation of DNA replication (9). MCM proteins are removed during DNA replication, causing chromatin to become unlicensed through inhibition of pre-RC reformation. Studies have shown that the MCM complex is involved in checkpoint control by protecting the structure of the replication fork and assisting in restarting replication by recruiting checkpoint proteins after arrest (reviewed in 3,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Kinesin superfamily proteins (KIFs) are molecular motors that drive directional, microtubule-dependent intracellular transport of membrane-bound organelles and other macromolecules (e.g. proteins, nucleic acids). The intracellular transport functions of KIFs are fundamentally important for a variety of cellular functions, including mitotic and meiotic division, motility/migration, hormone and neurotransmitter release, and differentiation (1-4). Disruptions to KIF-mediated intracellular transport have been linked with a variety of pathologies, ranging from tumorigenesis to defects in higher order brain function such as learning and memory (4-6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Notch signaling is activated upon engagement of the Notch receptor with its ligands, the DSL (Delta, Serrate, Lag2) proteins of single-pass type I membrane proteins. The DSL proteins contain multiple EGF-like repeats and a DSL domain that is required for binding to Notch (1,2). Five DSL proteins have been identified in mammals: Jagged1, Jagged2, Delta-like (DLL) 1, 3 and 4 (3). Ligand binding to the Notch receptor results in two sequential proteolytic cleavages of the receptor by the ADAM protease and the γ-secretase complex. The intracellular domain of Notch is released and then translocates to the nucleus where it activates transcription. Notch ligands may also be processed in a way similar to Notch, suggesting a bi-directional signaling through receptor-ligand interactions (4-6).

$303
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Western Blotting

Background: Ataxia telangiectasia mutated kinase (ATM) and ataxia telangiectasia and Rad3-related kinase (ATR) are related kinases that regulate cell cycle checkpoints and DNA repair (1). The identified substrates for ATM are p53, p95/NBS1, MDM2, Chk2, BRCA1, CtIP, 4E-BP1, and Chk1 (1,2) The essential requirement for the substrates of ATM/ATR is S*/T*Q. Hydrophobic amino acids at positions -3 and -1, and negatively charged amino acids at position +1 are positive determinants for substrate recognition by these kinases. Positively charged residues surrounding the S*/T*Q are negative determinants for substrate phosphorylation (3). The complex phenotype of AT cells suggests that it likely has additional substrates (3). To better understand the kinase and identify substrates for ATM and the related kinase ATR, CST has developed antibodies that recognize phosphorylated serine or threonine in the S*/T*Q motif.

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Chk2 is the mammalian orthologue of the budding yeast Rad53 and fission yeast Cds1 checkpoint kinases (1-3). The amino-terminal domain of Chk2 contains a series of seven serine or threonine residues (Ser19, Thr26, Ser28, Ser33, Ser35, Ser50, and Thr68) each followed by glutamine (SQ or TQ motif). These are known to be preferred sites for phosphorylation by ATM/ATR kinases (4,5). After DNA damage by ionizing radiation (IR), UV irradiation, or hydroxyurea treatment, Thr68 and other sites in this region become phosphorylated by ATM/ATR (5-7). The SQ/TQ cluster domain, therefore, seems to have a regulatory function. Phosphorylation at Thr68 is a prerequisite for the subsequent activation step, which is attributable to autophosphorylation of Chk2 at residues Thr383 and Thr387 in the activation loop of the kinase domain (8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Chromodomain-helicase-DNA-binding domain (CHD) proteins have been identified in a variety of organisms (1,2). This family of nine proteins is divided into three separate subfamilies: subfamily I (CHD1 and CHD2), subfamily II (CHD3 and CHD4), and subfamily III (CHD5, CHD6, CHD7, CHD8, and CHD9). All CHD proteins contain two tandem amino-terminal chromodomains, a SWI/SNF-related ATPase domain, and a carboxy-terminal DNA-binding domain (1,2). The chromodomains facilitate binding to methylated lysine residues of histone proteins and confer interactions with specific regions of chromatin. The SWI/SNF-related ATPase domain utilizes energy from ATP hydrolysis to modify chromatin structure. CHD proteins are often found in large, multiprotein complexes with their transcriptional activation or repression activity governed by other proteins within the complex. CHD3 (also known as Mi2-α) and CHD4 (also known as Mi2-β) are central components of the nucleosome remodeling and histone deacetylase (NuRD) transcriptional repressor complex, which also contains HDAC1, HDAC2, RBAP48, RBAP46, MTA1, MTA2, MTA3, and MBD3 (3-8). Both CHD3 and CHD4 contain two plant homeodomain (PHD) zinc finger domains that bind directly to HDAC1 and HDAC2.

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Nicastrin is a transmembrane glycoprotein serving as an essential component of the γ-secretase complex (1,2). Nicastrin is physically associated with presenilin and plays an important role in the stabilization and correct localization of presenilin to the membrane-bound γ-secretase complex (3). Nicastrin also serves as a docking site for γ-secretase substrates such as APP and Notch, directly binding to them and properly presenting them to γ-secretase to ensure the correct cleavage process (2,4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Double stranded DNA breaks (DSB’s) are the most toxic of DNA lesions. They occur in response to genotoxic stress, and they are also an obligate intermediate in the V(D)J recombination events in the immune system. The mechanism by which cells deal with DSB’s is known as NHEJ (non-homologous end-joining), and involves a core group of proteins that includes Ku, DNA-PK, XRCC4, and XLF (1). XLF, also known as Cernunnos, was originally discovered as a mutated protein from cells of individuals who displayed features of growth retardation, microcephaly, and immunodeficiency (2). These cells were sensitive to ionizing radiation and defective in V(D)J recombination. Exogenous expression of wild type XLF corrected these deficiencies (3), indicating that XLF is a critical component of the NHEJ response. XLF physically interacts with and may stimulate the ligase activity of XRCC4 (3).

$115
20 µl
$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Western Blotting

Background: Amyloid β (Aβ) precursor protein (APP) is a 100-140 kDa transmembrane glycoprotein that exists as several isoforms (1). The amino acid sequence of APP contains the amyloid domain, which can be released by a two-step proteolytic cleavage (1). The extracellular deposition and accumulation of the released Aβ fragments form the main components of amyloid plaques in Alzheimer's disease (1). APP can be phosphorylated at several sites, which may affect the proteolytic processing and secretion of this protein (2-5). Phosphorylation at Thr668 (a position corresponding to the APP695 isoform) by cyclin-dependent kinase is cell-cycle dependent and peaks during G2/M phase (4). APP phosphorylated at Thr668 exists in adult rat brain and correlates with cultured neuronal differentiation (5,6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Microcephalin-1 (MCPH1)/BRIT1 is an early DNA damage response protein named for its mutated state in the human disease primary microcephaly. BRIT1 forms damage-induced nuclear foci, is involved in DNA damage and cell cycle checkpoints as well as regulation of mitosis. BRIT1 function is necessary for DNA damage responses, and the absence of BRIT1 function leads to genome instability. A potential tumor suppressor, BRIT1 expression is reduced in human carcinomas (1-2, reviewed in 3).BRIT1 colocalizes with other DNA repair proteins (53BP1, MDC1, NBS1, ATM, RPA, and ATR) and is required for their activation (2). BRIT1 likely regulates DNA repair through chromatin remodeling in response to DNA damage, allowing access of repair proteins to DNA (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The WWOX (WW domain-containing oxidoreductase) gene encodes a protein with two WW domains followed by a short-chain dehydrogenase domain that was identified from a genomic region 16q23 of high instability, FRA16D (1,2). The mouse homolog, termed Wox1, was found to enhance TNFα-mediated apoptosis (3). The WWOX gene is disrupted in a many cancer types by deletions or translocation which has revealed a tumor suppressor function (4-7). In contrast, high levels of WWOX have been shown in shown in premetastic cancers, including breast and prostate (8-10). Stress stimuli can induce tyrosine phosphorylation within the first WW domain (Tyr33), followed by nuclear translocation and binding to and stabilizing the p53 tumor suppressor protein (11). WWOX and p53 can induce apoptosis in a synergistic manner. Tyrosine phosphorylation and nuclear translocation of WWOX has been implicated in the progression of cancers to metastatic states (10).

$489
96 assays
1 Kit
The PathScan® Acetyl-Histone H4 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of acetylated lysines on histone H4. A Histone H4 antibody has been coated onto the microwells. After incubation with cell lysates, Histone H4 is captured by the coated antibody. Following extensive washing, an Acetylated-Lysine Rabbit mAb is added to detect the acetylated lysines on the Histone H4 protein. Anti-Rabbit IgG, HRP-Linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB is added to develop color. The magnitude of optical density for this developed color is proportional to the quantity of acetylated Histone H4.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Monkey, Mouse

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

$759
30 rxns
1 Kit
The Active Cdc42 Detection Kit provides all reagents necessary for measuring activation of Cdc42 GTPase in the cell. GST-PAK1-PBD fusion protein is used to bind the activated form of GTP-bound Cdc42, which can then be immunoprecipitated with glutathione resin. Cdc42 activation levels are then determined by western blot using a Cdc42 Mouse mAb.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The Ras superfamily of small GTP-binding proteins (G proteins) comprise a large class of proteins (over 150 members) that can be classified into at least five families based on their sequence and functional similarities: Ras, Rho, Rab, Arf, and Ran (1-3). These small G proteins have both GDP/GTP-binding and GTPase activities and function as binary switches in diverse cellular and developmental events that include cell cycle progression, cell survival, actin cytoskeletal organization, cell polarity and movement, and vesicular and nuclear transport (1). An upstream signal stimulates the dissociation of GDP from the GDP-bound form (inactive), which leads to the binding of GTP and formation of the GTP-bound form (active). The activated G protein then goes through a conformational change in its downstream effector-binding region, leading to the binding and regulation of downstream effectors. This activation can be switched off by the intrinsic GTPase activity, which hydrolyzes GTP to GDP and releases the downstream effectors. These intrinsic guanine nucleotide exchange and GTP hydrolysis activities of Ras superfamily proteins are also regulated by guanine nucleotide exchange factors (GEFs) that promote formation of the active GTP-bound form and GTPase activating proteins (GAPs) that return the GTPase to its GDP-bound inactive form (4).

$714
24 assays
1 Kit
Next generation sequencing (NG-seq) is a high throughput method that can be used downstream of chromatin immunoprecipitation (ChIP) assays to identify and quantify target DNA enrichment across the entire genome. The SimpleChIP® ChIP-seq DNA Library Prep Kit for Illumina® contains all of the enzymes and buffers necessary to generate high quality DNA sequencing libraries from ChIP DNA for next-generation sequencing on the Illumina® platform. The fast, user-friendly workflow minimizes hands-on time needed for generation and purification of DNA libraries. This product must be used in combination with SimpleChIP® ChIP-seq Multiplex Oligos for Illumina® (Single Index Primers) #29580 or SimpleChIP® ChIP-seq Multiplex Oligos for Illumina® (Dual Index Primers) #47538.This product provides sufficient amounts of reagents for 24 reactions and is compatible with both enzymatic- and sonication-fragmented, ChIP-enriched DNA. This product is compatible with SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) #9003, SimpleChIP® Plus Enzymatic Chromatin IP Kit (Magnetic Beads) #9005, and SimpleChIP® Plus Sonication Chromatin IP Kit #56383. This product is not compatible with SimpleChIP® Enzymatic Chromatin IP Kit (Agarose Beads) #9002 and SimpleChIP® Plus Enzymatic Chromatin IP Kit (Agarose Beads) #9004 because agarose beads are blocked with sonicated salmon sperm DNA, which will contaminate DNA library preps and NG-seq.
REACTIVITY
All Species Expected

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to identify multiple proteins associated with a specific region of the genome, or the opposite, to identify the many regions of the genome bound by a particular protein (3-6). It can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors and DNA repair proteins. When performing the ChIP assay, cells or tissues are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. The chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or Quantitative Real-Time PCR can be used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing, or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8).

The DUB Antibody Sampler Kit offers an economical means of evaluating the presence and status of selected DUB enzymes. This kit contains enough primary antibody to perform two western blot experiments per primary.
The PDGF Receptor Activation Antibody Sampler Kit provides an economical means to evaluate the activation status of multiple members of the PDGF receptor pathway, including SHP-2, Akt, and p44/42 MAPK (Erk1/2). The kit includes enough antibody to perform two western blot experiments per primary antibody.
$489
96 assays
1 Kit
The PathScan® Phospho-eNOS (Ser1177) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of eNOS when phosphorylated at Ser1177. A phospho-eNOS (Ser1177) rabbit monoclonal antibody has been coated onto the microwells. After incubation with cell lysates, phospho-eNOS protein is captured by the coated antibody. Following extensive washing, an eNOS mouse monoclonal detection antibody is added to detect captured eNOS protein phosphorylated at Ser1177. HRP-linked streptavidin is then used to recognize the bound detection antibody. HRP substrate,TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of eNOS phosphorylated at Ser1177.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Bovine

Background: Endothelial nitric-oxide synthase (eNOS) is an important enzyme in the cardiovascular system. It catalyzes the production of nitric oxide (NO), a key regulator of blood pressure, vascular remodeling, and angiogenesis (1,2). The activity of eNOS is regulated by phosphorylation at multiple sites. The two most thoroughly studied sites are the activation site Ser1177 and the inhibitory site Thr495 (3). Several protein kinases including Akt/PKB, PKA, and AMPK activate eNOS by phosphorylating Ser1177 in response to various stimuli (4,5). In contrast, bradykinin and H2O2 activate eNOS activity by promoting both Ser1177 phosphorylation and Thr495 dephosphorylation (6,7).

This sampler kit provides an economical means to investigate protein folding and stability. The kit contains primary and secondary antibodies to perform two Western blots with each antibody.
$489
96 assays
1 Kit
The PathScan® Total mTOR Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of mTOR protein. A mTOR mouse antibody has been coated onto the microwells. After incubation with cell lysates, mTOR protein is captured by the coated antibody. Following extensive washing, an mTOR rabbit antibody is added to detect captured mTOR protein. Anti-rabbit IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate TMB is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of mTOR protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Monkey, Mouse, Rat

Background: The mammalian target of rapamycin (mTOR, FRAP, RAFT) is a Ser/Thr protein kinase (1-3) that functions as an ATP and amino acid sensor to balance nutrient availability and cell growth (4,5). When sufficient nutrients are available, mTOR responds to a phosphatidic acid-mediated signal to transmit a positive signal to p70 S6 kinase and participate in the inactivation of the eIF4E inhibitor, 4E-BP1 (6). These events result in the translation of specific mRNA subpopulations. mTOR is phosphorylated at Ser2448 via the PI3 kinase/Akt signaling pathway and autophosphorylated at Ser2481 (7,8). mTOR plays a key role in cell growth and homeostasis and may be abnormally regulated in tumors. For these reasons, mTOR is currently under investigation as a potential target for anti-cancer therapy (9).

$489
96 assays
1 Kit
The PathScan® Total IRS-1 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of IRS-1. An IRS-1 Rabbit Antibody has been coated onto the microwells. After incubation with cell lysates, IRS-1 (phospho and nonphospho) is captured by the coated antibody. Following extensive washing, IRS-1 Mouse Detection Antibody is added to detect the captured IRS-1 protein. Anti-mouse IgG, HRP-linked Antibody #7076 is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of absorbance for this developed color is proportional to the quantity of total IRS-1.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse, Rat

Background: Insulin receptor substrate 1 (IRS-1) is one of the major substrates of the insulin receptor kinase (1). IRS-1 contains multiple tyrosine phosphorylation motifs that serve as docking sites for SH2-domain containing proteins that mediate the metabolic and growth-promoting functions of insulin (2-4). IRS-1 also contains over 30 potential serine/threonine phosphorylation sites. Ser307 of IRS-1 is phosphorylated by JNK (5) and IKK (6) while Ser789 is phosphorylated by SIK-2, a member of the AMPK family (7). The PKC and mTOR pathways mediate phosphorylation of IRS-1 at Ser612 and Ser636/639, respectively (8,9). Phosphorylation of IRS-1 at Ser1101 is mediated by PKCθ and results in an inhibition of insulin signaling in the cell, suggesting a potential mechanism for insulin resistance in some models of obesity (10).

$489
96 assays
1 Kit
The PathScan® Phospho-Smad3 (Ser423/425) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that recognizes endogenous levels of Smad3 (Ser423/425) protein. A Smad2/3 Mouse Antibody has been coated on the microwells. After incubation with cell lysates, Smad3 proteins (phospho and nonphospho) are captured by the coated antibody. Following extensive washing, a Phospho-Smad3 (Ser423/425) Rabbit Detection Antibody is added to detect captured phospho-Smad3 (Ser423/425) proteins. Anti-rabbit IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate TMB is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of phospho-Smad3 (Ser423/425) proteins.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mink, Mouse

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

NuRD Complex Antibody Sampler Kit offers an economical means of detecting each target protein that composes the nucleosome remodeling and deacetylation complex (NuRD). The kit contains enough primary antibody to perform two western blot experiments with each primary antibody.
The Hippo Pathway Proteins Antibody Sampler Kit provides an economical means of detecting proteins that have been identified as upstream regulators of the Hippo Signaling Pathway. The kit provides enough antibody to perform two western blot experiments with each primary antibody.