Dropping with the temps: Cool deals on CST mAbs | Learn More >>

Product listing: Histone Deacetylase 3 (HDAC3) Antibody, UniProt ID O15379 #60538 to RGS4 (D4V1P) Rabbit mAb, UniProt ID P49798 #15129

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Acetylation of the histone tail causes chromatin to adopt an "open" conformation, allowing increased accessibility of transcription factors to DNA. The identification of histone acetyltransferases (HATs) and their large multiprotein complexes has yielded important insights into how these enzymes regulate transcription (1,2). HAT complexes interact with sequence-specific activator proteins to target specific genes. In addition to histones, HATs can acetylate nonhistone proteins, suggesting multiple roles for these enzymes (3). In contrast, histone deacetylation promotes a "closed" chromatin conformation and typically leads to repression of gene activity (4). Mammalian histone deacetylases can be divided into three classes on the basis of their similarity to various yeast deacetylases (5). Class I proteins (HDACs 1, 2, 3, and 8) are related to the yeast Rpd3-like proteins, those in class II (HDACs 4, 5, 6, 7, 9, and 10) are related to yeast Hda1-like proteins, and class III proteins are related to the yeast protein Sir2. Inhibitors of HDAC activity are now being explored as potential therapeutic cancer agents (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The CRISPR associated protein 9 (Cas9) is an RNA-guided DNA nuclease and part of the CRISPR antiviral immunity system that provides adaptive immunity against extra chromosomal genetic material (1). The CRISPR antiviral mechanism of action involves three steps: (i), acquisition of foreign DNA by host bacterium; (ii), synthesis and maturation of CRISPR RNA (crRNA), followed by the formation of RNA-Cas nuclease protein complexes; and (iii), target interference through recognition of foreign DNA by the complex and its cleavage by Cas nuclease activity (2). The type II CRISPR/Cas antiviral immunity system provides a powerful tool for precise genome editing and has potential for specific gene regulation and therapeutic applications (3). The Cas9 protein and a guide RNA consisting of a fusion between a crRNA and a trans-activating crRNA (tracrRNA) must be introduced or expressed in a cell. A 20-nucleotide sequence at the 5' end of the guide RNA directs Cas9 to a specific DNA target site. As a result, Cas9 can be "programmed" to cut various DNA sites both in vitro and in cells and organisms. CRISPR/Cas9 genome editing tools have been used in many organisms, including mouse and human cells (4,5). Research studies demonstrate that CRISPR can be used to generate mutant alleles or reporter genes in rodents and primate embryonic stem cells (6-8).Cas9 (S. aureus) is a Cas9 ortholog that is smaller, but as efficient, as the more commonly used Cas9 ortholog, Cas9 (S. Pyogenes) (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: TIAR is a member of the RNA-recognition motif (RRM) family of RNA-binding proteins (1,2). It functions as a translational repressor under conditions of cellular damage (3,4). In response to cellular stress, TIAR associates with eIF1, eIF3, and the 40S ribosomal subunit and forms noncanonical preinitiation complexes that are translationally inactive (3,4). TIAR then aggregates with its family member TIA1 and facilitates the accumulation of the translationally inactive preinitiation complexes into discrete cytoplasmic foci called stress granules. The two major isoforms of TIAR are the products of alternative mRNA splicing (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: TIAR is a member of the RNA-recognition motif (RRM) family of RNA-binding proteins (1,2). It functions as a translational repressor under conditions of cellular damage (3,4). In response to cellular stress, TIAR associates with eIF1, eIF3, and the 40S ribosomal subunit and forms noncanonical preinitiation complexes that are translationally inactive (3,4). TIAR then aggregates with its family member TIA1 and facilitates the accumulation of the translationally inactive preinitiation complexes into discrete cytoplasmic foci called stress granules. The two major isoforms of TIAR are the products of alternative mRNA splicing (5,6).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated NF-κB p65 (L8F6) Mouse mAb #6956.
APPLICATIONS
REACTIVITY
Bovine, Dog, Hamster, Human, Mink, Monkey, Mouse, Pig, Rat

Application Methods: Flow Cytometry

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The protein inhibitor of activated Stat (PIAS) proteins, which include PIAS1, PIAS3, PIASx, and PIASy, were originally characterized based on their interaction with the Stat family of transcription factors (1,2). PIAS1, PIAS3, and PIASx interact with and repress Stat1, Stat3, and Stat4, respectively (1-3). Deletion of PIAS1 leads to inhibition of interferon-inducible genes and increased protection against infection (4). The PIAS family contains a conserved RING domain that has been linked to a function as a small ubiquitin-related modifier (SUMO) ligase, coupling the SUMO conjugating enzyme Ubc9 with its substrate proteins (5,6). Numerous studies have now shown that PIAS family members can regulate the activity of transcription factors through distinct mechanisms, including NF-κB (7,8), c-Jun, p53 (5,9), Oct-4 (10), and Smads (11,12). The activity of PIAS1 is regulated by both phosphorylation and arginine methylation. Inflammatory stimuli can induce IKK-mediated phosphorylation of PIAS1 at Ser90, which is required for its activity (13). In addition, PRMT1 induces arginine methylation of PIAS1 at Arg303 following interferon treatment and is associated with its repressive activity on Stat1 (14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The Forkhead family of transcription factors is involved in tumorigenesis of rhabdomyosarcoma and acute leukemias (1-3). Within the family, three members (FoxO1, FoxO4, and FoxO3a) have sequence similarity to the nematode orthologue DAF-16, which mediates signaling via a pathway involving IGFR1, PI3K, and Akt (4-6). Active forkhead members act as tumor suppressors by promoting cell cycle arrest and apoptosis. Increased expression of any FoxO member results in the activation of the cell cycle inhibitor p27 Kip1. Forkhead transcription factors also play a part in TGF-β-mediated upregulation of p21 Cip1, a process negatively regulated through PI3K (7). Increased proliferation results when forkhead transcription factors are inactivated through phosphorylation by Akt at Thr24, Ser256, and Ser319, which results in nuclear export and inhibition of transcription factor activity (8). Forkhead transcription factors can also be inhibited by the deacetylase sirtuin (SirT1) (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Integrin α5β8 facilitates activation and release of TGF-β, which has immunosuppressive effects (1). Deletion of integrin β8 from dendritic cells led to development of inflammatory bowl disease and autoimmunity in mice, as well as failure to induce regulatory T cells that require TGF-β for development (2). TGF-β is also involved in Th17 cell differentiation. Mice lacking expression of integrin β8 on dendritic cells fail to develop Th17 cells and are protected from Th17-mediated autoimmune disease (3). Regulatory T cells express high levels of integrin α5β8, which enables them to suppress pathogenic T cell activation by activating latent TGF-β (4). Integrin β8 is also essential for vascular morphogenesis as integrin β8-deficient mice are embryonic or perinatal lethal and exhibit insufficient and abnormal vascular morphogenesis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Cytochrome P450 (CYP) is a family of enzymes that contain a heme group (1). These enzymes, when reduced and bound by carbon monoxide, maximally absorb light of 450 nm (1). Type I cytochrome P450s are found in mitochondria and function in the biosynthesis of essential molecules (1). Type II cytochrome P450s are found in endoplasmic reticulum (1). Some type II cytochrome P450s play a role in the biosynthesis of essential molecules whereas others metabolize xenobiotics (1). Research studies show that cytochrome P450s form various heteromeric complexes with other members of the P450 family influencing their catalytic activities (2-4). CYP1A2 is in the endoplasmic reticulum of hepatocytes and responsible for the breakdown of a variety of xenobiotic substances and bioactivation of carcinogens (2, 5). CYP1 enzymes, including CYP1A2, have been implicated in smoking-related osteoporosis (6). A meta-analysis shows that a particular polymorphism in CYP1A2 is potentially linked to increased cancer risk (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: HMGA1, formerly known as HMG-I/Y, belongs to a family of high mobility group proteins that contain an AT-hook DNA binding domain. HMGA proteins are considered architectural transcription factors; they do not have direct transcriptional activation capacity, but instead regulate gene expression by changing DNA conformation through binding to AT-rich regions in the DNA and/or direct interaction with other transcription factors (1,2). HMGA1 is highly expressed during embryogenesis and in embryonic stem cells, but not in fully differentiated adult tissues (2-4). Research studies have shown that HMGA1 is over-expressed in rapidly dividing neoplastic cells and a wide variety of aggressive cancers, including thyroid, colon, breast, pancreas, and prostate (2-4). Investigators have shown that forced expression of HMGA1 induces cellular transformation and an epithelial-to-mesenchymal transition (EMT), while inhibition of HMGA1 expression blocks anchorage-independent cell growth and proliferation of cancer cells, suggesting that HMGA1 contributes to carcinogenesis by inducing and maintaining a de-differentiated, highly proliferative cell state (5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Enzymes of the phosphodiesterase (PDE) superfamily catalyze the hydrolysis of 3',5'-cyclic nucleotides into the corresponding nucleotide 5'-monophosphates. The PDE superfamily includes 11 subfamilies (PDE1-PDE11) in mammals (1). These enzymes function as important positive and negative regulators of cellular response, including regulation of insulin secretion, heart function, erectile function, and inflammation (2-5). The cAMP-specific phosphodiesterase 4B (PDE4B, DPDE4) is important for the inflammatory response to lipopolysaccharide in monocytes (6). PDE4B plays an important role in the hydrolysis and inactivation of the ubiquitous second messenger cAMP that regulates lymphocyte cell growth and apoptosis (7). Research studies indicate that PDE4B is also involved in psychiatric disorders, including schizophrenia, autism, and depression (8-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The 14-3-3 family of proteins plays a key regulatory role in signal transduction, checkpoint control, apoptotic and nutrient-sensing pathways (1,2). 14-3-3 proteins are highly conserved and ubiquitously expressed. There are at least seven isoforms, β, γ, ε, σ, ζ, τ, and η that have been identified in mammals. The initially described α and δ isoforms are confirmed to be phosphorylated forms of β and ζ, respectively (3). Through their amino-terminal α helical region, 14-3-3 proteins form homo- or heterodimers that interact with a wide variety of proteins: transcription factors, metabolic enzymes, cytoskeletal proteins, kinases, phosphatases, and other signaling molecules (3,4). The interaction of 14-3-3 proteins with their targets is primarily through a phospho-Ser/Thr motif. However, binding to divergent phospho-Ser/Thr motifs, as well as phosphorylation independent interactions has been observed (4). 14-3-3 binding masks specific sequences of the target protein, and therefore, modulates target protein localization, phosphorylation state, stability, and molecular interactions (1-4). 14-3-3 proteins may also induce target protein conformational changes that modify target protein function (4,5). Distinct temporal and spatial expression patterns of 14-3-3 isoforms have been observed in development and in acute response to extracellular signals and drugs, suggesting that 14-3-3 isoforms may perform different functions despite their sequence similarities (4). Several studies suggest that 14-3-3 isoforms are differentially regulated in cancer and neurological syndromes (2,3).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor ® 488 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: c-Kit is a member of the subfamily of receptor tyrosine kinases that includes PDGF, CSF-1, and FLT3/flk-2 receptors (1,2). It plays a critical role in activation and growth in a number of cell types including hematopoietic stem cells, mast cells, melanocytes, and germ cells (3). Upon binding with its stem cell factor (SCF) ligand, c-Kit undergoes dimerization/oligomerization and autophosphorylation. Activation of c-Kit results in the recruitment and tyrosine phosphorylation of downstream SH2-containing signaling components including PLCγ, the p85 subunit of PI3 kinase, SHP2, and CrkL (4). Molecular lesions that impair the kinase activity of c-Kit are associated with a variety of developmental disorders (5), and mutations that constitutively activate c-Kit can lead to pathogenesis of mastocytosis and gastrointestinal stromal tumors (6). Tyr719 is located in the kinase insert region of the catalytic domain. c-Kit phosphorylated at Tyr719 binds to the p85 subunit of PI3 kinase in vitro and in vivo (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Heme oxygenases (HMOX or HO) catalyze the rate-limiting step of the oxidative degradation of heme into iron, carbon monoxide, and biliverdin (1). Biliverdin is then converted to bilirubin (2). Heme is a strong pro-oxidant whereas bilirubin is a strong antioxidant (2). Research studies suggest disregulation of heme oxygenases may contribute to oxidative stress-related diseases (2). There are three isozymes of heme oxygenases: HMOX1/HO-1, HMOX2/HO-2, and HMOX3/HO-3 (1,2). HMOX1/HO-1 is inducible by heme and other stress stimuli (1,3). HMOX2/HO-2 and HMOX3/HO-3 are constitutively expressed (1,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The mitochondrial flavoenzymes acyl-CoA dehydrogenases (ACADs) catalyze the α,β dehydrogenation of acyl-CoA esters (1). One of these enzymes, ACAD9, is essential for assembly of oxidative phosphorylation complex I (2). Studies have shown that ACAD9 gene mutations cause Complex I deficiency (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Transformation/transcription domain-associated protein (TRRAP) is a highly conserved 434 kDa protein found in various multiprotein complexes, such as SAGA, PCAF, NuA4 and TIP60, which contain histone acetyltransferase (HAT) activity (1-4). TRRAP functions as an adaptor protein by binding directly to the transactivation domains of transcriptional activator proteins and facilitating the recruitment of HAT complexes to acetylate histone proteins and activate transcription (1-5). TRRAP is required for the transcriptional activation and cell transformation activities of c-Myc, E2F1, E2F4, p53 and the adenovirus E1A proteins (1,6,7). TRRAP is also essential in early development and is required at the mitotic checkpoint and for normal cell cycle progression (8,9). In addition, TRRAP has been shown to function in DNA repair. As part of the TIP60 complex, TRRAP is required for the acetylation of histone H4 at double-stranded DNA breaks and subsequent DNA repair by homologous recombination (10). In addition, TRRAP associates with the MRN (MRE11, RAD50, NBS1) complex, which lacks intrinsic HAT activity yet functions in the sensing and subsequent repair of double-stranded breaks by non-homologous DNA end-joining (11). TRRAP shows significant homology to the PI-3 kinase domain of the ATM family of kinases; however, amino acids that map to the catalytic site of the kinase domain are not conserved in TRRAP (1).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated CREB (48H2) Rabbit mAb #9197.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: CREB is a bZIP transcription factor that activates target genes through cAMP response elements. CREB is able to mediate signals from numerous physiological stimuli, resulting in regulation of a broad array of cellular responses. While CREB is expressed in numerous tissues, it plays a large regulatory role in the nervous system. CREB is believed to play a key role in promoting neuronal survival, precursor proliferation, neurite outgrowth, and neuronal differentiation in certain neuronal populations (1-3). Additionally, CREB signaling is involved in learning and memory in several organisms (4-6). CREB is able to selectively activate numerous downstream genes through interactions with different dimerization partners. CREB is activated by phosphorylation at Ser133 by various signaling pathways including Erk, Ca2+, and stress signaling. Some of the kinases involved in phosphorylating CREB at Ser133 are p90RSK, MSK, CaMKIV, and MAPKAPK-2 (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: SMARCA1 (SNF2L) is one of the two orthologs of the ISWI (imitation switch) ATPases encoded by the mammalian genome (1). The ISWI chromatin remodeling complexes were first identified in Drosophila and have been shown to remodel and alter nucleosome spacing in vitro (2). SMARCA1 is the catalytic subunit of the nucleosome remodeling factor (NURF) and CECR2-containing remodeling factor (CERF) complexes (3-5). The NURF complex plays an important role in neuronal physiology by promoting neurite outgrowth and regulation of Engrailed homeotic genes that are involved in neuronal development in the mid-hindbrain (3). NURF is also thought to be involved in the maturation of T cells from thymocytes by regulating chromatin structure and expression of genes important for T cell development (6). The largest subunit of the NURF complex, BPTF, is required for proper development of mesoderm, endoderm, and ectoderm tissue lineages, suggesting a role for SMARCA1 in the development of the germ layers in mouse embryo (7). Disruption of the CERF complex by deletion of CECR2, an interacting partner of SMARCA1, is associated with the neural tube defect exencephaly, linking the CERF complex with regulation of neurulation (4).

$303
400 µl
This Cell Signaling Technology antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated Sepharose® beads.Phospho-Tyrosine (P-Tyr-1000) Rabbit mAb (Sepharose® Bead Conjugate) is useful for the immunoprecipitation of phospho-tyrosine containing proteins and peptides. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Tyrosine (P-Tyr-1000) MultiMab™ Rabbit mAb mix #8954.
APPLICATIONS
REACTIVITY
All Species Expected, Human

Application Methods: Immunoprecipitation

Background: Tyrosine phosphorylation plays a key role in cellular signaling (1). Research studies have shown that in cancer, unregulated tyrosine kinase activity can drive malignancy and tumor formation by generating inappropriate proliferation and survival signals (2). Antibodies specific for phospho-tyrosine (3,4) have been invaluable reagents in these studies. The phospho-tyrosine monoclonal antibodies developed by Cell Signaling Technology are exceptionally sensitive tools for studying tyrosine phosphorylation and monitoring tyrosine kinase activity in high throughput drug discovery.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD105/Endoglin is an auxiliary receptor for the TGF-β receptor complex, functioning in related signaling pathways (1,2). CD105/Endoglin is a transmembrane protein that exists as a disulfide-linked homodimer. It is mainly expressed in vascular and connective tissues and in endothelial and stromal cells. Upregulated CD105/endoglin expression has been reported during wound healing and tumor vascularization, and in inflammatory tissues and developing embryos (1-4). Mutations inCD105/endoglin have been found to be a causal factor of hereditary hemorrhagic telangiectasia (HHT), a disease characterized by malformation of vascular structure (5,6). The importance of this protein for normal and tumor vascular function makes it a good marker for endothelial cell proliferation as well as a potential therapeutic target in cancer (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: CrkII, a cellular homologue of v-Crk, belongs to a family of adaptor proteins with an SH2-SH3-SH3 domain structure that transmits signals from tyrosine kinases (1). The primary function of Crk is to recruit cytoplasmic proteins in the vicinity of tyrosine kinases through SH2-phospho-tyrosine interaction. Thus, the output from Crk depends on the SH3-binding proteins, which include the C3G and Sos guanine nucleotide exchange proteins, Abl tyrosine kinase, DOCK180 and some STE20-related kinases. The variety of Crk-binding proteins indicates the pleiotropic function of Crk (2). The two CrkII SH3 domains are separated by a 54 amino acid linker region, which is highly conserved in Xenopus, chicken and mammalian CrkII proteins (3). Tyrosine 221 in this region is phosphorylated by the Abl tyrosine kinase (4), IGF-I receptor (5) and EGF receptor (6). Once Tyr221 is phosphorylated, CrkII undergoes a change in intramolecular folding and SH2-pTyr interaction, which causes rapid dissociation of CrkII from the tyrosine kinase complex (3).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, IHC-Leica® Bond™, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: TNFRSF18, also known as glucocorticoid-induced tumor necrosis factor-receptor (TNFR)-related protein (GITR) and activation-inducible TNFR family receptor, encodes a type 1 membrane protein of the TNF-receptor superfamily (1). Three alternatively spliced transcript variants encoding distinct isoforms have been reported (2). GITR is an immune cell co-stimulatory receptor expressed constitutively at high levels on CD4+CD25+ T regulatory cells (Tregs), at low levels on naive and memory T cells, and is induced upon T cell activation (3-5). Studies show GITR can also be induced on NK cells, macrophages, and DCs (3, 4, 6). Although GITR does not have intrinsic enzymatic activity, TNFSF18 (also known as GITRL) expressed on antigen presenting cells binds to GITR resulting in recruitment of TNFR-associated factor family members and activation of the NF-kappa-B pathway in T cells (7). GITR ligation has been shown to play a role in CD8+ T cell activation, cytoxicity, and memory T cell survival (8-10). In the thymus, GITR is thought to play a key role in dominant immunological self-tolerance through thymic Treg differentiation and expansion (11). Of note, GITR ligation inhibits Treg suppressive function (12-13) and promotes effector T cell resistance to Treg suppression (14-15). Due to the combined effects on both Treg suppression and effector cell activation, GITR represents a unique opportunity for immunotherapeutic intervention in cancer (16).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Members of the Janus family of tyrosine kinases (Jak1, Jak2, Jak3, and Tyk2) are activated by ligands binding to a number of associated cytokine receptors (1). Upon cytokine receptor activation, Jak proteins become autophosphorylated and phosphorylate their associated receptors to provide multiple binding sites for signaling proteins. These associated signaling proteins, such as Stats (2), Shc (3), insulin receptor substrates (4), and focal adhesion kinase (FAK) (5), typically contain SH2 or other phosphotyrosine-binding domains.Activation of Jak kinases upon cytokine receptor binding is associated with tyrosine phosphorylation within their activation loops, including Tyr1034/1035 of Jak1, Tyr1007/1008 of Jak2, Tyr980/981 of Jak3, and Tyr1054/1055 of Tyk2. Many studies have indicated that various cytokine receptors have clear preferences that utilize distinct Jak family members. Aberrant regulation of Jak signaling is associated with a number of diseases, including myeloproliferative neoplasms, leukemia, and inflammatory disease (6).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Napsin A is an aspartic proteinase that is expressed in normal lung and kidney (1). In the lung, napsin A is expressed by type II pneumocytes and alveolar macrophages, where it plays a role in processing surfactant protein B (2). Napsin A is expressed in lung adenocarcinomas, where it can be used to identify primary and metastatic lesions with greater sensitivity compared to TTF-1 (3,4). Napsin A expression has also been described in other types of cancer, such as kidney and thyroid cancer (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Ribonucleotide reductase catalyzes the rate-limiting step in the synthesis of deoxynucleotide triphosphates (dNTPs). The regulatory M1 subunit (RRM1) is present throughout the cell division cycle, but downregulated in quiescent cells (1). Research studies have demonstrated that RRM1 is involved in carcinogenesis and tumor progression, and its expression is correlated with resistance to chemotherapy in non-small cell lung cancer (2-4).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: CD80 (B7-1, BB1) and CD86 (B7-2, B70) are members of the B7 family of cell surface ligands that regulate T cell activation and immune responses. CD80 is expressed on activated antigen presenting cells, including dendritic cells, B cells, monocytes, and macrophages. CD86 is expressed on resting monocytes, dendritic cells, activated B lymphocytes, and can be further upregulated in the presence of inflammation (1-3). CD80 and CD86 are ligands for CD28, which functions as a T cell costimulatory receptor. Interaction of CD28 with CD80 or CD86 provides the second signal required for naïve T cell activation, T cell proliferation, and acquisition of effector functions (3-7). Alternatively, CD80 and CD86 also act as ligands to CTLA-4, which results in the downregulation of T cell activity (3,7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Epiregulin (EREG) belongs to the epidermal growth factor (EGF) family and is a ligand for the EGF receptor (EGFR) and ErbB4 (1-3). The binding of EREG to homodimers, as well as heterodimers containing EGFR or ErbB4, leads to receptor activation and downstream signaling to promote cell growth and proliferation (4-6). In normal human tissue, moderate levels of EREG are expressed in the placenta and peripheral blood macrophages. Research studies have shown that EREG is expressed at high levels in numerous cancer cell lines, and EREG expression is correlated with primary cancer aggresiveness/metastases (7-11). In addition to its involvement in tumorigenesis, a variant of EREG has also been shown to be associated with tuberculosis susceptibility (12). EREG is synthesized as a ~30 kDa glycosylated membrane bound proepiregulin form (19 kDa when not glycosylated) and through subsequent proteolytic cleavage is processed to a 17 kDa C-terminal propeptide, and the 6kDa mature form of epiregulin (13).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Lysine-specific demethylase 1 (LSD1; also known as AOF2 and BHC110) is a nuclear amine oxidase homolog that acts as a histone demethylase and transcription cofactor (1). Gene activation and repression is specifically regulated by the methylation state of distinct histone protein lysine residues. For example, methylation of histone H3 at Lys4 facilitates transcriptional activation by coordinating the recruitment of BPTF, a component of the NURF chromatin remodeling complex, and WDR5, a component of multiple histone methyltransferase complexes (2,3). In contrast, methylation of histone H3 at Lys9 facilitates transcriptional repression by recruiting HP1 (4,5). LSD1 is a component of the CoREST transcriptional co-repressor complex that also contains CoREST, CtBP, HDAC1 and HDAC2. As part of this complex, LSD1 demethylates mono-methyl and di-methyl histone H3 at Lys4 through a FAD-dependent oxidation reaction to facilitate neuronal-specific gene repression in non-neuronal cells (1,6,7). In contrast, LSD1 associates with androgen receptor in human prostate cells to demethylate mono-methyl and di-methyl histone H3 at Lys9 and facilitate androgen receptor-dependent transcriptional activation (8). Therefore, depending on gene context LSD1 can function as either a transcriptional co-repressor or co-activator. LSD1 activity is inhibited by the amine oxidase inhibitors pargyline, deprenyl, clorgyline and tranylcypromine (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: mTORC1 kinase complex is a critical component in the regulation of cell growth (1,2). Its activity is modulated by energy levels, growth factors, and amino acids (3,4). The four related GTPases, RagA, RagB, RagC, and RagD, have been shown to interact with raptor in mTORC1 (1,2). These interactions are both necessary and sufficient for mTORC1 activation in response to amino acid signals (1,2). A protein complex consisting of LAMTOR1/C11orf59, LAMTOR2/ROBLD3, and LAMTOR3/MAPKSP1 has been identified to interact with and recruit the four Rag GTPases to the surface of lysosomes (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Regulators of G protein signaling (RGS) are a family of about 40 proteins that determine the signaling amplitude and duration of G protein-coupled receptor signaling via modulation of the GTPase activity of G proteins (1-3). Each RGS has a distinct structure, expression pattern, and regulation, resulting in preferential interactions with receptors, G proteins, and other signaling proteins, as well as a unique function (4).