20% off purchase of 3 or more products* | Learn More >>

Product listing: FXR2 (D85D6) Rabbit mAb, UniProt ID P51116 #7098 to SMC4 (D14E2) Rabbit mAb, UniProt ID Q9NTJ3 #5547

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Fragile X syndrome is a genetic disorder characterized by a spectrum of physical and behavioral features and is a frequent form of inherited mental retardation (1). X-linked FMRP (FMR-1) and its two autosomal homologs, FXR1 and FXR2, are polyribosome-associated RNA-binding proteins that are involved in the pathogenesis of fragile X syndrome (1-3). Each of the fragile X proteins can self-associate, as well as form heteromers with the other two related proteins (3). FMRP can act as a translation regulator and is a component of RNAi effector complexes (RISC), suggesting a role in gene silencing (4). The Drosophila homolog of FMRP (dFMRP) associates with Argonaute 2 (Ago2) and Dicer and can coimmunoprecipitate with miRNA and siRNA (5). These results suggest that fragile X syndrome is related to abnormal translation caused by defects in RNAi-related pathways. In addition, FMRP, FXR1, and FXR2 are components of stress granules (SG) and have been implicated in the translational regulation of mRNAs (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The Na,K-ATPase is an integral membrane heterodimer belonging to the P-type ATPase family. This ion channel uses the energy derived from ATP hydrolysis to maintain membrane potential by driving sodium export and potassium import across the plasma membrane against their electrochemical gradients. It is composed of a catalytic α subunit and a β subunit (reviewed in 1). Several phosphorylation sites have been identified for the α1 subunit. Tyr10 is phosphorylated by an as yet undetermined kinase (2), Ser16 and Ser23 are phosphorylated by PKC, and Ser943 is phosphorylated by PKA (3-5). All of these sites have been implicated in the regulation of enzyme activity in response to hormones and neurotransmitters, altering trafficking and kinetic properties of Na,K-ATPase. Altered phosphorylation in response to angiotensin II stimulates activity in the rat proximal tubule (6). Na,K-ATPase is also involved in other signal transduction pathways. Insulin regulates its localization in differentiated primary human skeletal muscle cells, and this regulation is dependent on ERK1/2 phosphorylation of the α subunit (7). Na,K-ATPase and Src form a signaling receptor complex that affects regulation of Src kinase activity and, subsequently, its downstream effectors (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Neutrophil elastase is hematopoietic serine protease that belongs to the chymotrypsin superfamily and plays a critical role in the innate immune function of mature neutrophils and monocytes (1,2). Neutrophil elastase is actively synthesized as an inactive zymogen in myelocytic precursor cells of the bone marrow, which then undergoes activation by limited proteolysis and sorting to primary (azurophil) storage granules of mature neutrophil granulocytes for regulated release (3,4). Research studies have shown that neutrophils play a significant role in mediating the inflammatory response through the release of neutrophil elastase, which activates pro-inflammatory cytokines and degrades components of the extracellular matrix and Gram-negative bacteria (5). Mutations in the gene encoding neutrophil elastase, ELA2, have been implicated in hematological diseases such as cyclic and severe congenital neutropenia, which is characterized by defects in promyelocyte maturation (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen)

Background: Vasoactive intestinal polypeptide (VIP) is a neuropeptide synthesized as a precursor that is processed to an active mature peptide of 28 residues (1). VIP is produced by neurons, endocrine, and immune cells and is expressed in many tissues, in agreement with its various biological functions (2). VIP acts through activation of two receptors belonging to the G protein-coupled receptor family, VPAC1 and VPAC2 (2) and elicits several effects such as vasodilation, regulation of smooth muscle cell contractility, and blood flow in the gastrointestinal track (3,4). In addition, VIP is involved in the regulation of T cell differentiation (6), and in immunosuppression (7,8).

$262
3 nmol
300 µl
SignalSilence® Ezh2 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit Ezh2 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: The polycomb group (PcG) proteins are involved in maintaining the silenced state of several developmentally regulated genes and contribute to the maintenance of cell identity, cell cycle regulation, and oncogenesis (1,2). Enhancer of zeste homolog 2 (Ezh2), a member of this large protein family, contains four conserved regions including domain I, domain II, and a cysteine-rich amino acid stretch that precedes the carboxy-terminal SET domain (3). The SET domain has been linked with histone methyltransferase (HMTase) activity. Moreover, mammalian Ezh2 is a member of a histone deacetylase complex that functions in gene silencing, acting at the level of chromatin structure (4). Ezh2 complexes methylate histone H3 at Lys9 and 27 in vitro, which is thought to be involved in targeting transcriptional regulators to specific loci (5). Ezh2 is deregulated in various tumor types, and its role, both as a primary effector and as a mediator of tumorigenesis, has become a subject of increased interest (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The breast cancer susceptibility gene, BRCA1, codes for an E3 ubiquitin ligase that functions in the maintenance of genome stability through regulation of the DNA damage response and DNA repair. BRCA1 protein forms at least three distinct complexes (BRCA1 A, B, and C) with other DNA repair proteins, and these interactions are vital for regulation of BRCA1 function. The BRCA1 A complex includes Rap80, BRCC36, Abraxas, MERIT40/NBA1, and BRE/BRCC45 and functions in G2/M phase checkpoint control (reviewed in 1,2). MERIT40 and BRE maintain the stability of both the BRCA1 A complex and the cytoplasmic BRISC complex, which contains BRCC36 and ABRO1 but not BRCA1 (3).Researchers have shown that the expression level of BRE is related to patient survival in breast cancer (4), and it may predict a favorable outcome in acute myeloid leukemia (AML) (5,6). Studies have also shown that BRE is overexpressed in human hepatocellular carcinoma (7) and that overexpression of BRE can cause resistance to apoptotic signaling and promote tumor growth (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein ubiquitination requires the concerted action of the E1, E2 and E3 ubiquitin-conjugating enzymes. Ubiquitin is first activated through an ATP-dependent formation of a thiol ester with an E1 enzyme. The activated ubiquitin is then transferred to a thiol-group of an E2 ubiquitin-conjugation enzyme. The final step is the transfer of ubiquitin from E2 to an ε-amino group of a lysine residue on the target protein, a transfer mediated by ubiquitin-conjugating enzyme E3 (1). UbcH5C is a universally expressed E2 ubiquitin conjugating enzyme and member of the UbcH5 family that also includes UbcH5A and UbcH5B (2). Evidence suggests that UbcH5C plays an important role in regulating a number of signaling pathways by catalyzing the ubiquitination of key target proteins, including p53, PCNA, the IκB kinase protein NEMO, and the apoptosis inhibitor BRUCE (3-6). Gene expression profiles revealed increased expression of UbcH5C in meibomian cell carcinoma and oncocytic thyroid adenomas (7,8), while an RNAi screen reveals diffrential Ubc5HC in acute promyelocytic cells (9). These results suggest a potential role of UbcH5C in cell cycle control and tumorigenesis.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) is a member of S-adenosylhomocysteine hydrolase family, which participates in the metabolism of S-adenosyl-L-homocysteine (1). Two Drosophila homologs of S-adenosylhomocysteine hydrolase-like proteins, dAhcyL1 and dAhcyL2, were identified as novel components of methionine metabolism (2). dAhcyL1 and dAhcyL2 function as dominant-negative regulators of S-adenosylhomocysteine hydrolase (2). Global down-regulation of both dAhcyL1 and dAhcyL2 extended life span (2). In addition, brain-specific down regulation of dAhcyL1 extended life span (2). AHCYL1 is also known as inositol 1,4,5-trisphosphate receptor (IP3R) binding protein released with IP3 (IRBIT) (1, 3). This protein binds to the endoplasmic reticulum calcium release channel IP3R and represses its acitivity (1, 3). As a multifunctional regulator, AHCYL1/IRBIT can also form a complex with and suppress the activity of ribonucleotide reductase, thereby influencing the balance of deoxynucleotide triphosphates essential for DNA replication and genomic integrity (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: BAFF, a member of the TNF superfamily of proteins, is a homotrimeric transmembrane protein, which is cleaved to produce a soluble cytokine (1). BAFF may also further oligomerize into 60-mer structures (1). BAFF is expressed by monocytes, neutrophils, macrophages, dendritic cells, activated T cells, and epithelial cells (1,2). BAFF plays a key role in B cell development, survival, and activation (1,3,4). BAFF binds to three distinct receptors, BAFF-R, TACI, and BCMA (1). These receptors are differentially expressed during B cell development and among B cell subsets (1,2,4). While BAFF-R and BCMA bind to the homotrimeric form of BAFF, TACI only binds to membrane bound or higher order BAFF structures (1). The BAFF/ BAFF-R interaction activates both canonical and non-canonical NF-κB pathways, PI3K/Akt, and mTOR (2,4). Activation of the noncanonical NF-κB pathway via BAFF-R is negatively regulated by TRAF3 (5). Research studies have shown that elevated levels of BAFF may exacerbate many autoimmune disorders, making it a potential therapeutic target (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: BIRC6/BRUCE/APOLLON is a member of the inhibitor of apoptosis protein (IAP) family. BIRC6 is a huge 530 kDa membrane-associated protein with a single survivin-like baculoviral IAP repeat (BIR) domain at the amino terminus, and a ubiquitin-conjugating enzyme domain at the carboxy terminus (1-3). Several research studies support the notion that BIRC6 functions as a dual regulator of cell death and cell division (4-6), and BIRC6 is the only essential BIR-containing protein in mammalian cell growth and development (4,7). Research studies have documented the overexpression of BIRC6 in colon cancer stem cells and in other cancer cell lines (8,9). BIRC6 inhibits apoptosis by either 1) binding to and inhibiting caspases (10) or 2) ubiquitinating the IAP antagonist SMAC and the apoptosis initiator caspase 9, thereby targeting these proteins for proteasomal degradation (4,5). BIRC6 itself is regulated by ubiquitination and proteasomal degradation upon stimulation of apoptosis (7,11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: mRNA decapping is an important process in the mRNA turnover (1). DCP1A and DCP2 were identified as two human decapping enzymes and homologs of the better-characterized S. cerevisiae enzymes. Both putative decapping enzymes interact with the regulator of nonsense transcripts 1 (UPF1) and may be recruited by UPF1 or related proteins to mRNA sequences that contain premature termination codons (1). Additional research studies demonstrate that DCP1A, DCP1B (the homolog of DCP1A) and DCP2 colocalize with decapping activation factors RCK/p54 and Lsm proteins in cytoplasmic loci (2). DCP1A, DCP1B and DCP2 are components of cytoplasmic processing (P) bodies, with hyper-phosphorylation of DCP1A during mitosis suggesting a possible mechanism of P-body regulation during the cell cycle (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Glutamate oxaloacetate transaminase 1 (GOT1) catalyzes the interconversion of aspartate and oxaloacetate (1). The increased transamination primarily catalyzed by GOT1 leads to elevated levels of 2-hydroxyglutarate, which promotes methylation of the Foxp3 gene locus, inhibits Foxp3 expression and activates T helper 17 (TH17) cell differentiation (2). In addition, GOT1 is critical to the survival of cells with electron transport chain inhibition by generating aspartate, a metabolite determining the proliferation of these cells (3-4). Studies also show that GOT1 plays a key role in the noncanonical glutamine pathway that supports liver tumorigenesis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Methylation of DNA at cytosine residues in mammalian cells is a heritable, epigenetic modification that is critical for proper regulation of gene expression, genomic imprinting and development (1,2). Three families of mammalian DNA methyltransferases have been identified: DNMT1, DNMT2 and DNMT3 (1,2). DNMT1 is constitutively expressed in proliferating cells and functions as a maintenance methyltransferase, transferring proper methylation patterns to newly synthesized DNA during replication. DNMT3A and DNMT3B are strongly expressed in embryonic stem cells with reduced expression in adult somatic tissues. DNMT3A and DNMT3B function as de novo methyltransferases that methylate previously unmethylated regions of DNA. DNMT2 is expressed at low levels in adult somatic tissues and its inactivation affects neither de novo nor maintenance DNA methylation. DNMT1, DNMT3A and DNMT3B together form a protein complex that interacts with histone deacetylases (HDAC1, HDAC2, Sin3A), transcriptional repressor proteins (RB, TAZ-1) and heterochromatin proteins (HP1, SUV39H1), to maintain proper levels of DNA methylation and facilitate gene silencing (3-8). Improper DNA methylation contributes to diseased states such as cancer (1,2). Hypermethylation of promoter CpG islands within tumor suppressor genes correlates with gene silencing and the development of cancer. In addition, hypomethylation of bulk genomic DNA correlates with and may contribute to the onset of cancer. DNMT1, DNMT3A and DNMT3B are over-expressed in many cancers, including acute and chronic myelogenous leukemias, in addition to colon, breast and stomach carcinomas (9-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The evolutionarily conserved CCR4-NOT (CNOT) complex regulates mRNA metabolism in eukaryotic cells (1). This regulation occurs at different levels of mRNA synthesis and degradation, including transcription initiation, elongation, deadenylation, and degradation (1). Multiple components, including CNOT1, CNOT2, CNOT3, CNOT4, CNOT6, CNOT6L, CNOT7, CNOT8, CNOT9, and CNOT10 have been identified in this complex (2). In addition, subunit composition of this complex has been shown to vary among different tissues (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The p21-activated kinase (PAK) family of serine/threonine kinases is engaged in multiple cellular processes, including cytoskeletal reorganization, MAPK signaling, apoptotic signaling, control of phagocyte NADPH oxidase, and growth factor-induced neurite outgrowth (1,2). Several mechanisms that induce PAK activity have been reported. Binding of Rac/Cdc42 to the CRIB (or PBD) domain near the amino terminus of PAK causes autophosphorylation and conformational changes in PAK (1). Phosphorylation of PAK1 at Thr423 by PDK induces activation of PAK1 (3). Several autophosphorylation sites have been identified, including Ser199 and Ser204 of PAK1 and Ser192 and Ser197 of PAK2 (4,5). Because the autophosphorylation sites are located in the amino-terminal inhibitory domain, it has been hypothesized that modification in this region prevents the kinase from reverting to an inactive conformation (6). Research indicates that phosphorylation at Ser144 of PAK1 or Ser139 of PAK3 (located in the kinase inhibitory domain) affects kinase activity (7). Phosphorylation at Ser21 of PAK1 or Ser20 of PAK2 regulates binding with the adaptor protein Nck (8). PAK4, PAK5, and PAK6 have lower sequence similarity with PAK1-3 in the amino-terminal regulatory region (9). Phosphorylation at Ser474 of PAK4, a site analogous to Thr423 of PAK1, may play a pivotal role in regulating the activity and function of PAK4 (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: High temperature requirement protein A2 (HtrA2)/Omi is a serine protease with homology to the E. coli HtrA protein (DegP) and is thought to be involved in apoptosis and stress-induced degradation of misfolded proteins (1). While HtrA2 was orignally identified to be present in either the nucleus (1) or endoplasmic reticulum (2), subsequent studies have shown that it localizes in mitochondria and is released during apoptosis (3-8). HtrA2 is produced as a 50 kDa zymogen that is cleaved to generate a 36 kDa mature protein that exposes an amino terminal motif (AVPS) resembling that of the IAP inhibitor Smac/Diablo (3-8). Like Smac, interaction between HtrA2 and IAP family members, such as XIAP, antagonizes their inhibition of caspase activity and protection from apoptosis (3-8). Interestingly, HtrA2 knock-out mice did not show signs of reduced apoptosis, but rather had a loss of neurons in the striatum and a Parkinson's-like phenotype, suggesting that HtrA2 might have a neuroprotective function (9-11). This activity is associated with the protease activity of HtrA2 (9). Furthermore, research studies have shown that loss of function mutations in the HtrA2 gene are associated with Parkinson's disease (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The sequence-specific transcription factor activator protein 2α (AP-2α) is required for normal growth and morphogenesis during mammalian development (1,2). Decreased or loss of AP-2α expression has been observed in many different types of human cancers including breast cancer (3,4), ovarian cancer (5), melanoma (6) and prostate cancer (7). These findings suggest that AP-2α expression plays a crucial role in tumorigenicity. Studies have also shown that p53 overexpression in human breast carcinoma cells induces the level of AP-2α expression. Furthermore, p53 binds to the cis-element in the AP-2α promoter, suggesting that AP-2α is a target of p53. AP-2α may mediate the effect of p53 to inhibit cell proliferation (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: MLANA, also known as MART-1, is a member of a melanocyte lineage-specific family of proteins. It is expressed in melanocytes, retinal pigment epithelium, and melanoma cells. Its function is not entirely understood, but it is believed to be involved in the stability of GPR143, as well as the stability, trafficking, and processing of PMEL; both proteins are involved in the formation of stage II melanosomes (1). In melanosomes, MLANA is specifically located in the trans-Golgi network, however conformational changes to the protein or a sub-population of the protein causes it to localize back to the ER and small endosomal vesicles (2). In the context of melanoma cells, the conformational change is thought to be caused by aberrant exposure of epitopes, which are recognized by cytolytic T-lymphocytes (3). MLANA may be useful as a marker of metastatic melanoma (4). MHC-II restricted phospho-MLANA peptides, which are recognized by CD4 cells, are being investigated as potential candidates for cancer immunotherapy (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Pig

Application Methods: Western Blotting

Background: Axl, Sky, and Mer are three members of a receptor tyrosine kinase (RTK) family that share a conserved intracellular tyrosine kinase domain and an extracellular domain similar to those seen in cell adhesion molecules. These RTKs bind the vitamin K-dependent protein growth-arrest-specific 6 (Gas6), which is structurally related to the protein S anticoagulation factor (1). Upon binding to its receptor, Gas6 activates phosphatidylinositol 3-kinase (PI3K) and its downstream targets Akt and S6K, as well as NF-κB (2,3). A large body of evidence supports a role for Gas6/Axl signaling in cell growth and survival in normal and cancer cells (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Despite their relatively small size (8-12 kDa) and uncomplicated architecture, S100 proteins regulate a variety of cellular processes such as cell growth and motility, cell cycle progression, transcription, and differentiation. To date, 25 members have been identified, including S100A1-S100A18, trichohyalin, filaggrin, repetin, S100P, and S100Z, making it the largest group in the EF-hand, calcium-binding protein family. Interestingly, 14 S100 genes are clustered on human chromosome 1q21, a region of genomic instability. Research studies have demonstrated that significant correlation exists between aberrant S100 protein expression and cancer progression. S100 proteins primarily mediate immune responses in various tissue types but are also involved in neuronal development (1-4).Each S100 monomer bears two EF-hand motifs and can bind up to two molecules of calcium (or other divalent cation in some instances). Structural evidence shows that S100 proteins form antiparallel homo- or heterodimers that coordinate binding partner proximity in a calcium-dependent (and sometimes calcium-independent) manner. Although structurally and functionally similar, individual members show restricted tissue distribution, are localized in specific cellular compartments, and display unique protein binding partners, which suggests that each plays a specific role in various signaling pathways. In addition to an intracellular role, some S100 proteins have been shown to act as receptors for extracellular ligands or are secreted and exhibit cytokine-like activities (1-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Various steps in gene expression, such as mRNA processing, surveillance, export, and synthesis are coupled to transcription elongation (1,2). The C-terminal domain (CTD) of the large subunit of RNA polymerase II plays an important role in the integration of these different steps (1,2). IWS1 interacts with Spt6, a CTD-binding transcription elongation factor and H3 chaperone (1,2). IWS1 also recruits another CTD-binding protein, HYPB/Setd2 histone methyltransferase, to the RNA polymerase II complex for elongation-coupled H3K36 trimethylation (2). Thus, IWS1 links Spt6 and HYPB/Setd2 in a large complex and regulates mRNA synthesis and histone methylation at the co-transcriptional level (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: BAP31 (B-cell receptor-association protein 31) is a transmembrane protein associated with the endplasmic reticulum (ER) and ER-Golgi intermediates and has been implicated in protein trafficking and apoptosis (1,2). During apoptosis Bap31 is cleaved by caspase-8 at two carboxy-terminal sites which can then direct apoptotic signals between the ER and mitochondria (2-4). Association of BAP31 with the anti-apoptotic proteins Bcl-2 or Bcl-xL could function to regulate this ER-mitochondrial pathway (2,5). Several studies have shown that BAP31 can control the trafficking of select proteins between the ER and Golgi apparatus and can affect the transport of proteins to the cell surface (6-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The Set1 histone methyltransferase protein was first identified in yeast as part of the Set1/COMPASS histone methyltransferase complex, which methylates histone H3 at Lys4 and functions as a transcriptional co-activator (1). While yeast contain only one known Set1 protein, mammals contain six Set1-related proteins: SET1A, SET1B, MLL1, MLL2, MLL3, and MLL4, all of which assemble into COMPASS-like complexes and methylate histone H3 at Lys4 (2,3). These Set1-related proteins are each found in distinct protein complexes, all of which share the common subunits WDR5, RBBP5, ASH2L, CXXC1 and DPY30, which are required for proper complex assembly and modulation of histone methyltransferase activity (2-6). MLL1 and MLL2 complexes contain the additional protein subunit, menin (6).MLL3, also known as histone-lysine N-methyltransferase 2C (KMT2C), is a large 540 kDa protein that functions as part of the MLL3/COMPASS-like complex to activate gene expression by mediating mono-methylation of histone H3 lysine 4 at gene enhancers (7). Enhancer-specific H3 lysine 4 mono-methylation (H3K4me1) correlates with increased levels of chromatin interactions between gene enhancers and promoters, while loss of this modification results in a reduction of enhancer-promoter interactions (8). Furthermore, H3K4me1 facilitates recruitment of the Cohesin complex, which may function to promote the interactions between gene enhancers and promoters (8). MLL3 is found to be mutated or have altered expression in a number of different cancers (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: S5a (PSMD4) is a subunit of the 19S regulatory proteasome complex functioning in ubiquitinated-protein targeting and degradation (1). S5a contains two polyubiquitin binding motifs (UIM) that bind multiubiquitin chains by hydrophobic interaction (2,3). In addition to ubiquitin, the UIM of S5a shows high affinity to a ubiquitin-like domain present in many proteins. S5a binds to these types of proteins directly and mediates their targeting to the proteasome for degradation (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: The eukaryotic cell cycle is carefully controlled by protein phosphorylation involving a number of phosphatases, kinases, and co-factors. Cyclin-dependent kinases (CDKs/cdcs), Polo-like kinases (PLKs), and Aurora kinases have been shown to be major regulators of mitotic control (reviewed in 1,2). Protein aurora borealis (Bora), a co-factor of Aurora-A first identified in Drosophila, also plays a key roll in cell cycle progression (3). Bora levels are low in G0/G1, increasing in S-phase and peaking at G2 (4).Found to be conserved from C. elegans to humans, Bora is translocated from the nucleus to the cytoplasm upon activation of cdc2 at the onset of mitosis. Once present in the cytoplasm, Bora binds to and activates Aurora-A and PLK1 (3-5). It has been proposed that the binding of human Bora to PLK1 may lead to a conformational change in the protein that disrupts the autoinhibition by the Polo-Box Domain (PBD). This would allow for Thr210 on PLK1 to become more accessible for phosphorylation by Aurora-A (reviewed in 6). Active PLK1 then initiates the PLK1-cdc25-cdc2 positive feedback loop, leading to mitotic entry and the phosphorylation of Bora. Once phosphorylated in prophase, Bora is degraded allowing for normal mitotic progression (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Pyruvate kinase is a glycolytic enzyme that catalyses the conversion of phosphoenolpyruvate to pyruvate. In mammals, the M1 isoform (PKM1) is expressed in most adult tissues (1). The M2 isoform (PKM2) is an alternatively spliced variant of M1 that is expressed during embryonic development (1). Research studies found that cancer cells exclusively express PKM2 (1-3). PKM2 is shown to be essential for aerobic glycolysis in tumors, known as the Warburg effect (1). When cancer cells switch from the M2 isoform to the M1 isoform, aerobic glycolysis is reduced and oxidative phosphorylation is increased (1). These cells also show decreased tumorigenicity in mouse xenografts (1). Recent studies showed that PKM2 is not essential for all tumor cells (4). In the tumor model studied, PKM2 was found to be active in the non-proliferative tumor cell population and inactive in the proliferative tumor cell population (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: RPA70 (HSSB, REPA1, RF-A, RP-A, p70) is a component of a heterotrimeric complex, composed of 70, 32/30 and 14 kDa subunits, collectively known as RPA. RPA is a single stranded DNA binding protein, whose DNA binding activity is believed to reside entirely in the 70 kDa subunit. The complex is required for almost all aspects of cellular DNA metabolism such as DNA replication (1-3), recombination, cell cycle and DNA damage checkpoints, and all major types of DNA repair including nucleotide excision, base excision, mismatch and double-strand break repairs (4-7). In response to genotoxic stress in eukaryotic cells, RPA has been shown to associate with the Rad9/Rad1/Hus1 (9-1-1) checkpoint complex (8). RPA is hyperphosphorylated upon DNA damage or replication stress by checkpoint kinases including ataxia telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK) (9-11). Phosphorylation of RPA32 occurs at serines 4, 8 and 33 (11). Hyperphosphorylation may alter RPA-DNA and RPA-protein interactions. In addition to the checkpoint partners, RPA interacts with a wide variety of protein partners, including proteins required for normal replication such as RCF, PCNA and Pol α, and also proteins involved in SV40 replication, such as DNA polymerase I and SV40 large T antigen (10,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Mindbomb homolog 1 (MIB1) is an E3 ligase that facilitates the ubiquitination and the subsequent endocytosis of the Notch ligands, Delta and Jagged (1,2). MIB1 appears to promote the ubiquitination and degradation of death-associated protein kinase (DAPK1) in vitro (3). Expression of MIB1 is seen in both adult and embryonic murine tissues (4). Recently, MIB1 was reported to regulate the extrinsic cell death pathway by binding to cellular FLICE-like inhibitory proteins (cFLIP-L and cFLIP-S), which reduces the interaction of caspase-8 with cFLIP and leads to cell death (5). MIB1 is also involved in T and marginal zone B (MZB) cell development in the lymphopoietic niches (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Pig, Rat

Application Methods: Western Blotting

Background: BAG6 (BCL2-associated athanogene-6), alternately known as BAT3 (HLA-B-associated transcript 3), was originally identified as a gene within the class III region of the human major histocompatibility complex, but has subsequently been found to exhibit protein chaperone activity. BAG6, in conjunction with other chaperone proteins and ubiquitin ligases, regulates protein stability and insertion of tail-anchored membrane proteins into the endoplasmic reticulum (1-3). The BAT3 complex, consisting of BAG6, TRC35 and Ubl4a localizes to ribosomes synthesizing membrane proteins and facilitates tailed-anchored protein capture by TRC40 and subsequent insertion of the nascent protein in to the ER membrane (4,5). BAG6 also plays a critical role in clearing cells of mis-folded and mis-localized peptides via endoplasmic reticulum-associated degradation and the ubiquitin-proteasome system (1,6,7). BAG6 may also act as a chaperone for glycoproteins through its interaction with DERLIN2 (8).In addition to its role as a chaperone, BAG6 has also been implicated in regulating chromatin structure and gene expression. For example, BAG6 and SET1A act as binding partners for BORIS to effect changes of chromatin structure and gene expression (9). Similarly, increased expression of BAG6 induces p300-mediated acetylation of p53, which is required for DNA damage response (10). BAG6 has also been found to interact with TGF-β, and in so doing acts as a positive regulator of TGF-β1 stimulation of type 1 collagen expression (11). BAG6 also suppresses bone morphogenic protein (BMP) signaling via its interaction with and regulation of small C-terminal domain phosphatase (SCP) that dephosphorylates SMAD proteins resulting in subsequent termination of BMP-mediated events (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Structural maintenance of chromosomes 2 (SMC2) and 4 (SMC4) proteins are subunits of the condensin complex, which enables chromosome condensation and maintains the compaction of chromosomes as they separate to opposite poles during anaphase (1-3). In addition to regulating chromosome condensation, condensin is a general regulator of chromosome architecture and may function to regulate gene expression and DNA repair. SMC proteins contain a hallmark bipartite ATPase domain of the ABC ATPase superfamily, which consists of an N-terminal Walker A motif nucleotide-binding domain and C-terminal Walker B motif catalytic domain that interact to form a functional ATPase (1-3). The two ATPase domains are connected by two coiled coil domains separated by a central hinge region that facilitates protein-protein interactions between partnering SMC proteins. In the case of the condensin complex, SMC2 and SMC4 interact to form a functional ATPase required for chromatin condensation; however, the mechanism by which this ATPase activity regulates chromsome architecture is still being determined. In addition to SMC proteins, condensin contains three auxiliary subunits, which function to regulate condensin ATPase activity. Higher eukaryotes contain two distinct condensin complexes (condensin I and II), both of which contain SMC2 and SMC4 (1-3). Condensin I also contains the auxiliary subunits CAP-D2, CAP-G and CAP-H, while condensin II contains the related auxiliary proteins CAP-D3, CAP-G2 and CAP-H2. The two condensin complexes show different localization patterns during the cell cycle and on chromosomes and both are required for successful mitosis, suggesting distinct functions for each complex (1-3).