Microsize antibodies for $99 | Learn More >>

Product listing: SignalSilence® HSP27 siRNA II, UniProt ID P04792 #6526 to GKAP Antibody, UniProt ID O14490 #13602

$262
3 nmol
300 µl
SignalSilence® HSP27 siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit HSP27 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Heat shock protein (HSP) 27 is one of the small HSPs that are constitutively expressed at different levels in various cell types and tissues. Like other small HSPs, HSP27 is regulated at both the transcriptional and posttranslational levels (1). In response to stress, the HSP27 expression increases several-fold to confer cellular resistance to the adverse environmental change. HSP27 is phosphorylated at Ser15, Ser78, and Ser82 by MAPKAPK-2 as a result of the activation of the p38 MAP kinase pathway (2,3). Phosphorylation of HSP27 causes a change in its tertiary structure, which shifts from large homotypic multimers to dimers and monomers (4). It has been shown that phosphorylation and increased concentration of HSP27 modulates actin polymerization and reorganization (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: GBP5 (guanylate binding protein 5) is one of seven interferon-inducible GTPases in humans that have recently been shown to be involved in host defense against intracellular pathogens (1,2). Specifically, in response to intracellular bacteria or cell wall components, GBP5 acts as a tetramer to facilitate assembly of the NLRP3 inflammasome, leading to caspase-1 activation (2,3). In addition, GBP5 enables activation of the AIM2 inflammasome by promoting lysis of intracellular bacteria and release of pathogenic double-stranded DNA (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Protein ubiquitination is an important posttranslational modification that regulates protein function and fate (1). Ubiquitin (Ub) can be conjugated to target proteins in either monomeric or polymeric forms. There are several different lysine residues within Ub that can be used as conjugation sites for poly-Ub chain formation. Different poly-Ub linkages mediate different functions of the target protein ranging from alterations in protein function to degradation (2). UBE2N/Ubc13 is a ubiquitin-E2-conjugating enzyme that catalyzes K63-linked poly-Ub chain formation (1,2). UBE2N forms a heterodimer with MMS2 or Uev1A to exert its E2 ligase function. The UBE2N/MMS2 and UBE2N/Uev1A heterodimers catalyze different modes of target protein ubiquitination to mediate various signaling pathways (3-5) including: DNA damage and recombination, p53 and check point control, the cell cycle (6-10), immunoreceptor signaling (11,12), and endocytosis (13). Most recently, UBE2N was shown to play an important role in inflammatory signaling by promoting K63-linked ubiquitination and activation of IKK downstream of the IL-1β receptor (14). Furthermore, interaction of UBE2N with the Triad1 E3 protein-ubiquitin ligase was shown to play an important role in myelopoiesis (15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Fodrin (also named nonerythroid spectrin) is a universally expressed membrane-associated cytoskeletal protein consisting of alpha- and beta-subunits (1). This protein is important for maintaining normal membrane structure and supporting cell surface protein function (1). Alpha-fodrin is one of the primary targets cleaved by caspases during apoptosis. The full length 240 kDa protein can be cleaved at several sites within its sequence by activated caspases to yield amino-terminal 150 kDa, carboxy-terminal 120 kDa and 35 kDa major products (2-5). Cleavage of alpha-fodrin leads to membrane malfunction and cell shrinkage.

$262
3 nmol
300 µl
SignalSilence® Stat3 siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit Stat3 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: The Stat3 transcription factor is an important signaling molecule for many cytokines and growth factor receptors (1) and is required for murine fetal development (2). Research studies have shown that Stat3 is constitutively activated in a number of human tumors (3,4) and possesses oncogenic potential (5) and anti-apoptotic activities (3). Stat3 is activated by phosphorylation at Tyr705, which induces dimerization, nuclear translocation, and DNA binding (6,7). Transcriptional activation seems to be regulated by phosphorylation at Ser727 through the MAPK or mTOR pathways (8,9). Stat3 isoform expression appears to reflect biological function as the relative expression levels of Stat3α (86 kDa) and Stat3β (79 kDa) depend on cell type, ligand exposure, or cell maturation stage (10). It is notable that Stat3β lacks the serine phosphorylation site within the carboxy-terminal transcriptional activation domain (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphate transporter 1 (PiT1/SLC20A1) is a sodium dependent phosphate (Pi) transporter that imports Pi into cells. PiT1 was initially identified as a receptor for retroviruses (1,2). It is widely expressed in various tissues where it plays a critical role in maintaining cellular Pi homeostasis (3,4). Phosphate transporter 1 is important in cell proliferation and tumor cell growth independent of PiT1 phosphate transport function (5). Researchers have found that PiT1 is involved in TNF-α induced apoptosis (6). Moreover, phosphate uptake via PiT1 is crucial for vascular calcification (7) and overexpression of PiT1 leads to soft tissue calcification in Werner syndrome patients (8). Additional research indicates that increased PiT1 expression is seen in calcific aortic valve disease (CAVD) tissues, and that PiT1 enhances apoptosis and mineralization by modifying Akt1 levels (9).

The c-Kit Antibody Sampler Kit provides a fast and economical means of evaluating levels of c-Kit receptor protein phosphorylated at the specified sites, as well as total c-Kit receptor levels. The kit contains enough primary and secondary antibody to perform two Western blot experiments.

Background: c-Kit is a member of the subfamily of receptor tyrosine kinases that includes PDGF, CSF-1, and FLT3/flk-2 receptors (1,2). It plays a critical role in activation and growth in a number of cell types including hematopoietic stem cells, mast cells, melanocytes, and germ cells (3). Upon binding with its stem cell factor (SCF) ligand, c-Kit undergoes dimerization/oligomerization and autophosphorylation. Activation of c-Kit results in the recruitment and tyrosine phosphorylation of downstream SH2-containing signaling components including PLCγ, the p85 subunit of PI3 kinase, SHP2, and CrkL (4). Molecular lesions that impair the kinase activity of c-Kit are associated with a variety of developmental disorders (5), and mutations that constitutively activate c-Kit can lead to pathogenesis of mastocytosis and gastrointestinal stromal tumors (6). Tyr719 is located in the kinase insert region of the catalytic domain. c-Kit phosphorylated at Tyr719 binds to the p85 subunit of PI3 kinase in vitro and in vivo (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents. Control of autophagy was largely discovered in yeast and involves proteins encoded by a set of autophagy-related genes (Atg) (1). Formation of autophagic vesicles requires a pair of essential ubiquitin-like conjugation systems, Atg12-Atg5 and Atg8-phosphatidylethanolamine (Atg8-PE), which are widely conserved in eukaryotes (2). Numerous mammalian counterparts to yeast Atg proteins have been described, including three Atg8 proteins (GATE-16, GABARAP, and LC3) and four Atg4 homologs (Atg4A/autophagin-2, Atg4B/autophagin-1, Atg4C/autophagin-3, and Atg4D/autophagin-4) (3-5). The cysteine protease Atg4 is pivotal to autophagosome membrane generation and regulation. Atg4 primes the Atg8 homolog for lipidation by cleaving its carboxy terminus and exposing its glycine residue for E1-like enzyme Atg7. The Atg8 homolog is transferred to the E2-like enzyme Atg3 before forming the Atg8-PE conjugate. During later stages of autophagy, Atg4 can reverse this lipidation event by cleaving PE, thereby recycling the Atg8 homolog (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Raf kinase inhibitor protein (RKIP) is a member of the phosphatidylethanolamine-binding protein (PEBP) family that associates with Raf-1 and the MEK and MAP kinases (1). RKIP has been shown to form a complex with Raf-1, MEK, and Erk (2). Although MEK and Erk can simultaneously bind RKIP, the association between Raf-1 and RKIP and that of RKIP and MEK are mutually exclusive. Thus, RKIP competitively disrupts the Raf-1-MEK complex and effectively terminates signal transmission from Raf-1 to MAP kinases (2). The inhibitory effect of RKIP on MAP kinase signaling is eliminated by PKC phosphorylation of RKIP at Ser153 (3). PKC phosphorylation on Ser153 also promotes the association of RKIP with GRK2, which prevents GRK2-dependent internalization of GPCR (4). RKIP also interacts with modules of the NF-κB pathway, including NF-κB-inducing kinase (NIK), TAK1, IKKα and IKKβ (5). These interactions antagonize cytokine-induced activation of the NF-κB pathway (5). Restoration of RKIP expression is associated with the inhibition of prostate cancer metastasis, implying that RKIP may be a potential clinical target as a suppressor of tumor metastasis through inhibition of vascular invasion (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: 5'-3' exoribonuclease 2 (XRN2) is a nuclear exonuclease that degrades RNA containing a 5’-monophosphate to component mononucleotides. XRN2 also plays an important role in the termination of transcription at the 3’-end of genes by displacing RNA polymerase II (RNAPII) from the DNA strand (1,2). According to the ‘torpedo’ model of transcription termination, XRN2 gains access to the 5’ phosphate of the nascent RNA during co-transcriptional polyadenylation site cleavage. XRN2 degrades RNA at a faster rate than RNAPII-mediated RNA synthesis, resulting in the eviction of RNAPII from the template (3-5). In addition, XRN2 is essential for maturation of 5.8S and 28S ribosomal RNA and small nucleolar RNA molecules (2). Several research studies suggest that XRN2 plays a role in the quality control check of RNA molecules. XRN2 co-transcriptionally degrades aberrant nuclear mRNA transcripts that result from defective 5’mRNA capping, splicing, or 3’end formation (6). XRN2 exonuclease rapidly degrades hypomodified tRNA and excess miRNA molecules, indicating that XRN2 likely regulates tRNA and miRNA quality control as well (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Ring1A plays a role in polycomb group (PcG) protein function. PcG proteins are critically involved in transcriptional repression of Hox genes during development (1,2). PcG proteins form two distinct complexes: EED-EZH2 and the PRC complex, which is composed of at least Bmi1 and Ring1A/Ring1B. The EZH2-containing complex is responsible for the methylation of H3K27, and the PRC complex ubiquitylates H2A. EZH2 methylation is required prior to PRC ubiquitylation, and both are essential for Hox gene repression (3). It has recently been shown that PcG proteins silence a group of developmentally important regulator genes, referred to as bivalent genes (4). This regulation may be responsible for the ability of stem cells to self renew or switch to differentiate into multipotent progenitors. Aberrant epigenetic silencing by PcG proteins is also thought to be important in tumorigenesis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Laminins are a family of proteins important for maintaining cellular basement membrane (BM) structure and function (1). Laminins exist as heterotrimers of alpha (LAMA), beta (LAMB), and gamma (LAMC) chains. LAMC1 (laminin gamma-1) is a ubiquitously expressed gamma chain, and has three distinct functional domain structures. The N-terminal LN domain binds to specific alpha and beta chains to form a unique laminin heterotrimer. The LE domain mediates interactions with nidogens, while the C-terminal coil-coil fragment is necessary for agrin association. Collectively, these interactions are critical for stabilization and function of the BM (1). Genetic ablation of LAMC1 has demonstrated a critical role for this protein in embryo implantation, lung and kidney development, and neuronal Schwann cell myelination and regeneration, in addition to Trypanosome infection (2-5). Upregulation of LAMC1 has also been associated with tumor progression in multiple tumor types (6-9), possibly by creating a BM environment that is favorable for cancer cell metastasis and invasion.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Mitotic control is important for normal growth, development, and maintenance of all eukaryotic cells. Research studies have demonstrated that inappropriate control of mitosis can lead to genomic instability and cancer (reviewed in 1,2). A regulator of mitosis, Greatwall kinase (Gwl), was first identified in Drosophila melanogaster (3). Subsequent studies showed that, based on sequence homology and function, microtubule-associated serine/threonine kinase-like (MASTL) is the human ortholog of Gwl (4). Regulation of MASTL/Gwl activation has been shown to be critical for the correct timing of mitosis. Research studies have shown that Gwl is activated by hyperphosphorylation (5). The phosphorylation of human Gwl at Thr194 and Thr207 by active cyclin B1-cdc2 leads to possible autophosphorylation at Ser875 (Ser883 in Xenopus), which stabilizes the kinase. Activated Gwl phosphorylates α-Endosulfine (ENSA) and cAMP-regulated phosphoprotein 19 (ARPP19) at Ser67 and Ser62, respectively. Phosphorylated ENSA and ARPP19 inhibit the activity of the B55 subunit-associated form of protein phosphatase 2A (PP2A-B55), allowing for complete phosphorylation of mitotic substrates by cyclin B1-cdc2 and mitotic entry. When Gwl is inactivated, PP2A-B55 reactivates, which leads to dephosphorylation of cyclin B1-cdc2 and mitotic exit (5,6, reviewed in 7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The heat shock protein HSPA4 (Apg-2, HSP70RY) is a member of the heat-shock protein 110 (Hsp 110) subfamily of Hsp70 heat-shock proteins (1). Apg-2 has chaperone ability similiar to Hsp110, and it plays a role under non-stress conditions (2). Apg-2 interacts with TJP1/ZO-1 and functions as a regulator of ZO-1-ZONAB signaling in epithelial cells in response to cellular stress (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Immunoprecipitation, Western Blotting

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Vascular endothelial growth factor receptor 3 (VEGFR3) is a 195 kDa membrane receptor tyrosine kinase. VEGF receptors are characterized by the presence of seven extracellular immunoglobulin (Ig)-like domains followed by a membrane-spanning domain and a conserved intracellular tyrosine kinase domain (1). VEGF receptor 3 expression is largely restricted to adult lymphatic endothelium and is thought to control lymphangiogenesis (1,2). Binding of VEGF-C/VEGF-D to VEGFR3 results in transphosphorylation of tyrosine residues in its intracellular domain, recruitment of signaling molecules and activation of ERK1/2 and Akt signaling cascades (1,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Phosphofructokinase (PFK) catalyzes the phosphorylation of fructose-6-phosphate in glycolysis (1). There are three isozymes: muscle-type, liver-type, and platelet-type (2,3). Platelet-type phosphofructokinase (PFKP) is expressed in various cell types (4,5). Research studies have shown that genetic variations in PFKP are associated with individuals born small for gestational age that are prone to obesity and diabetes later in adulthood (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: 5’-3’ exoribonuclease 1 (XRN1) is a cytoplasmic exonuclease that degrades RNA containing a 5’-monophosphate to component mononucleotides. XRN1 is the primary exonuclease associated with ribosomes in the cytoplasm and is responsible for mRNA turnover (1,2). This turnover is facilitated in discrete structures in the cytoplasm called P-bodies that contain decapping and deadenylation proteins (3). XRN1 also plays a role in RISC-mediated mRNA degradation, as it associates with 3’ mRNA fragments generated by RISC cleavage. This process does not require uncapping or deadenylation (4). XRN1 plays a significant role in viral RNA degradation (5). As such, many viral genomes, including hepatitis C, Dengue, and West Nile, encode for XRN1-resistant long non-coding RNA that affect innate immunity and viral replication (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The ubiquitin-conjugating (UBC) enzymes HR6A and HR6B are the mammalian orthologues of the Saccharomyces cerevisiae Rad6 gene products (1). In S. cerevisiae, Rad6 facilitates cell cycle progression and ubiquitinates histone H2B (2,3). In vivo phosphorylation of HR6A Ser120 by cyclin-dependent kinases is thought to be important for the coordination and timing of ubiquitination events involved in cell cycle progression (4). In response to DNA damage, HR6A is known to interact physically with p53 and p14ARF, but knockout mice lacking HR6A or HR6B exhibit normal DNA damage responses (5,6). HR6B knockout males exhibit defective spermatogenesis, while HR6A knockout females fail to produce viable offspring (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD133, also known as Prominin, was first described as a cell surface marker recognized by monoclonal antibody AC133 on putative hematopoietic stem cells (1). Subsequent cDNA cloning indicated that CD133 is a five-transmembrane protein with a predicated molecular weight of 97 kDa. Due to heavy glycosylation, its apparent molecular weight is 130 kDa as determined by SDS-PAGE analysis (2). Besides blood stem cells, CD133 is expressed on and used to isolate other stem cells, including cancer stem cells (3-7). A deletion mutation in CD133 produces aberrant protein localization and may result in retinal degeneration in humans (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Mastermind-like (MAML) family of proteins are homologs of Drosophila Mastermind. The family is composed of three members in mammals: MAML1, MAML2, and MAML3 (1,2). MAML proteins form complexes with the intracellular domain of Notch (ICN) and the transcription factor CSL (RBP-Jκ) to regulate Notch target gene expression (3-5). MAML1 also interacts with myocyte enhancer factor 2C (MEF2C) to regulate myogenesis (6). MAML2 is frequently found to be fused with Mucoepidermoid carcinoma translocated gene 1 (MECT1, also know as WAMTP1 or TORC1) in patients with mucoepidermoid carcinomas and Warthin's tumors (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Tensin 2 belongs to the Tensin family of cytoskeletal proteins that includes Tensin 1-3 and Cten, which couple integrins to the actin cytoskeleton (1). Tensin proteins contain SH2 and phosphotyrosine binding (PTB) domains, which enable interaction with diverse signaling molecules and proteins. Tensin family proteins play important roles in signal transduction, cell proliferation, and motility (2-5).Tensin 2 is localized to focal adhesions of various tissues with highest expression in the heart, kidney, and liver (6,7). Tensin 2 inhibits Akt/PKB signaling via a phosphatase tensin-type domain (8). However, Tensin 2 also mediates thrombopoietin/c-Mpl signaling, which promotes Akt signaling (9). Interaction with Tensin 2 is essential for the tumor suppressor function of Deleted in Cancer 1 (DLC1) (10-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The yeast nucleotide excision repair (NER) radiation sensitive protein 23 (rad23) and its human homologs Rad23A (hHR23A) and Rad23B (hHR23B) are critical components of the cellular machinery that recognize DNA lesions and serve as receptors that target ubiquitinated substrates to the proteasome for degradation (1).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: SLFN11 is a nuclear protein that belongs to the Schlafen (SLFN) family of genes involved in cell cycle regulation and growth inhibition (1, 2). Expression of SLFN11 predicts sensitivity of cancer cell lines to DNA-damaging agents (1, 3). Evidence suggests that in the presence of DNA-targeted therapies, SLFN11 is recruited to stressed replication forks where it blocks replication leading to cell death (4). SLFN11 is being explored as a predictive biomarker for response to DNA-targeted therapies (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Tousled-like kinases (TLK1 and TLK2) are nuclear serine/threonine kinases named for their homology to the Tousled gene from Arabidopsis thaliana, essential for flower development (1). The kinase activities of the TLKs are cell cycle regulated, with maximal activity during S phase (1). TLK appears to play a role in chromatin assembly and DNA damage checkpoint regulation (1,2). In C. elegans, TLK1 is essential for appropriate transcription during embryonic development (3). Substrates for TLK include the human chromatin assembly factor Asf, which functions in DNA replication- and repair-coupled chromatin assembly (2). DNA damage during S phase, when TLK is maximally active, leads to inhibition of TLK activity (1). This inhibition requires ataxia mutated kinase (ATM) and Chk1 (4,5). ATM and the related kinase ATR are activited by DNA damage during S phase, phosphorylate Chk1/Chk2, and block the transition into mitosis (6). Chk1 phosphorylates TLK1 on Ser743 in vitro and in vivo, leading to inhibition of TLK1 activity (4). This process likely provides a mechanism to slow the chromatin assembly processes controlled by TLK in the event of DNA damage.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: HLA-F adjacent transcript 10 (FAT10/Ubiquitin D) belongs to the ubiquitin-like modifier (Ubl) family of proteins. The 18 kDa FAT10 protein contains two tandem Ubl domains that are oriented in a head-to-tail fashion and a free C-terminal di-glycine motif, which is available for isopeptide bond formation with target proteins via an E1-E2-E3 enzymatic cascade (1). Indeed, FAT10 provides a ubiquitin-independent signal for proteasomal degradation (2). Research studies have demonstrated that FAT10 expression is enriched in lymphoid organs and that its expression is transiently upregulated via the NF-kB pathway in response to pro-inflammatory cytokines such as TNFα and IFNγ (1,3-5). In solid tumors that possess inflammatory microenviroments, research studies have shown that FAT10 is overexpressed and may serve as a biomarker for inflamed tumors (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: ABHD6 (α/β-Hydrolase domain-containing 6) is a monoacylglycerol lipase, ubiquitously expressed with the highest expression in brown adipose tissue, small intestine, and brain (1). A high-fat diet upregulates ABHD6 mRNA expression in small intestine and liver, and ABHD6 knockdown protects against high-fat diet-induced obesity, hepatic steatosis, and systemic insulin resistance (2). In addition, it has been shown that ABHD6 is a negative modulator of glucose-stimulated insulin secretion (3). In the central nervous system, ABHD6 is expressed postsynptically and degrades the endocannabinoid 2-arachidonoylglycerol (2-AG), an endogenous activator of cannabinoid receptors (4,5). Inhibitors of α/β-hydrolase domain 6 (ABHD6) have been actively pursued as a promising approach to treat inflammation, metabolic disorders, and epilepsy (2,6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Rab27 is a member of the Ras superfamily of small Rab GTPases implicated in exocytosis (1-2). The protein is localized in secretory lysosomes, such as melanosomes in melanocyte or lytic granules in cytotoxic T cells to control exosome secretion pathway (3-5). Rab27 has two isoforms, Rab27a and Rab27b. Rab27a colocalizes with part of CD63 staining vesicles, and Rab27b shows perinuclear distribution. Target knock out studies indicate that the isoforms control different steps of the exosome secretion pathway (6). Rab27a interacts with a wide range of effectors and is involved in multiple steps of exocytosis depending on the effector it associated with and the cell type that is involved (1,2). Rab27a has been shown to be an important player in leukocyte function, cancer metastasis and invasion, and insulin secretion (7-11)

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Presenilin Enhancer 2 (PEN2) is a small integral membrane glycoprotein that contains two recognized transmembrane domains. Both the N- and C-terminal domains are oriented into the lumen of the endoplasmic reticulum (1). PEN2, along with Presenilin 1, Presenilin 2, Nicastrin, and APH-1 form the protein complex γ-secretase (2). The proteinase BACE catalyses the initial step in APP processing by cleaving and releasing soluble APPβ (3). The remaining membrane bound APP is then cleaved by the γ-secretase complex, causing the release of amyloid β-peptide, the main constituent of amyloid plaques. These plaques are a hallmark of Alzheimer’s disease pathology (2). In addition to APP, the γ-secretase complex cleaves several other proteins and necessary presenilin-dependent signaling cascades, including the Notch pathway (4). It was found that PEN2 is an important part of the γ-secretase complex, and knocking it down results in reduced amounts of the complex, resulting in a loss of γ-secretase activity (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: Guanylate kinase-associated protein (GKAP, DLGAP1 or SAPAP1) is part of the postsynaptic scaffolding complex that includes the PSD-95, SAP90, and SHANK proteins (1-3). GKAP links the synaptic protein SHANK to a PSD-95 complex that includes NMDA glutamate receptors (3,4). Synaptic activity induces ubiquitination of GKAP protein by the E3 ubiquitin ligase TRIM3, which results in decreased GKAP protein levels through degradation (5,6). GKAP protein turnover is regulated by a CaMKII-dependent, bidirectional mechanism. Synaptic over-excitation leads to CaMKIIα-mediated GKAP phosphorylation at Ser346, which induces polyubiquitination of GKAP and removal of the scaffold protein from synapses. In contrast, during low-level synaptic activity CaMKIIβ phosphorylates GKAP, which triggers dissociation of GKAP from the motor protein complex responsible for GKAP transport to the base of the synapse and its subsequent incorporation into the postsynaptic density (7).