Interested in promotions? | Click here >>

Product listing: TERF2IP (D9H4) Rabbit mAb, UniProt ID Q9NYB0 #5433 to VGLUT2 (D4E3U) Rabbit mAb, UniProt ID Q9P2U8 #14487

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Telomeric repeat-binding factor 2-interacting protein (TERF2IP, also known as RAP1) is a component of the Shelterin Complex, a multi-protein complex that binds and organizes telomeres into T-loop structures to prevent them from being recognized by the cell as DNA double stranded breaks (1,2). The Shelterin Complex is composed of TERF2IP, TIN2 and TPP2 proteins, in addition to three DNA binding proteins that function to recruit the complex to telomeres: TRF1 and TRF2 bind double-stranded TTAGGG repeats found at telomeres, while the POT1 protein binds single-stranded TTAGGG repeats found at the very end of the telomeres (2). Together, these proteins function to protect telomeres and ensure proper replication and processing of chromosome ends. Recent studies have shown that TERF2IP is dispensable for maintenance of telomere length, organization of telomeric chromatin, and regulation of telomeric transcription (3,4). However, TERF2IP is required for inhibition of homology-directed repair (HDR), which can create undesirable telomeric sister chromatid exchange (3,4). In addition to its role in telomere maintenance, TERF2IP is also found in the cytoplasm, where it functions as an IκB kinase (IKK) adaptor protein and regulates NF-κB-dependent gene expression (5). TERF2IP forms a complex with IKKs and is critical for proper recruitment of IKKs to and activation of the p65 subunit of NF-κB. Elevated levels of TERF2IP have been found in breast cancer cells with NF-κB hyperactivity, and knockdown of TERF2IP sensitizes these cells to apoptosis, further identifying TERF2IP as a potential cancer therapeutic target (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Sec61 translocon is a channel complex located on the endoplasmic reticulum (ER) membrane to mediate membrane protein insertion into the organelle (1). There are three components in the complex, Sec61A, Sec61B, and Sec61G (2). Sec61A is the main component of the channel on the ER membrane and directly contacts nascent synthesized polypeptide TMD (transmembrane domain) for insertion (3). Sec61G functions in stablizing the channel (3). In addition to TMD insertion, Sec61 translocon has also been shown to be involved in ER calcium leakage (4,5). Both Bip and calmodulin can inhibit this leakage by their interaction with Sec61A (6,7). Sec61B has no obvious function related to target protein ER membrane insertion, but is involved in other vesicle trafficking processes such as EGFR and Her2 trafficking from the cytosol to nucleus (8,9), Gurken trafficking from Golgi to plasma membrane (10), and copper-transporting ATPase membrane distribution (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) is an essential step in the formation of thymine nucleotides (1,2, reviewed in 3). This process is catalyzed by thymidylate synthase (TS or TYMS), a homodimer composed of two 30 kDa subunits. TS is an intracellular enzyme that provides the sole de novo source of thymidylate, making it a required enzyme in DNA biosynthesis with activity highest in proliferating cells (1). Being the exclusive source of dTMP, investigators have concluded that TS is also an important target for anticancer agents such as 5-fluorouracil (5-FU) (1-5). 5-FU acts as a TS inhibitor and is active against solid tumors such as colon, breast, head, and neck. Research studies have demonstrated that patients with metastases expressing lower levels of TS have a higher response rate to treatment with 5-FU than patients with tumors that have increased levels of TS (5). Researchers continue to investigate TS expression in different types of cancers (6-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: A variety of factors contribute to the important biological event of initiation of translation. The eIF4F complex of translation initiation factors binds to the 5' m7 GTP cap to open up the mRNA secondary structure and allow small ribosome subunit binding (1). eIF4A, an eIF4 complex component that acts as an ATP-dependent RNA helicase, unwinds the secondary structure of the 5' mRNA untranslated region to mediate ribosome binding (2,3). In addition, eIF4A has recently been shown to repress Dpp/BMP signalling in a translation-independent manner in Drosophila (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The family of alkaline phosphatases in humans is comprised of four members: intestinal, placental, placental-like (germ cell type), and tissue nonspecific. The tissue nonspecific isozyme is also known as the liver/bone/kidney alkaline phosphatase due to its expression in these tissues. It is also highly expressed in embryonic stem (ES) and embryonic carcinoma (EC) cells and is lost as these cells undergo differentiation (1,2). The TRA-2-54 (2J) Mouse mAb specifically detects this isozyme and does not detect the other family members, making it a useful tool for tracking the pluripotency status of ES and EC cells in culture.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Notch signaling is activated upon engagement of the Notch receptor with its ligands, the DSL (Delta, Serrate, Lag2) proteins of single-pass type I membrane proteins. The DSL proteins contain multiple EGF-like repeats and a DSL domain that is required for binding to Notch (1,2). Five DSL proteins have been identified in mammals: Jagged1, Jagged2, Delta-like (DLL) 1, 3 and 4 (3). Ligand binding to the Notch receptor results in two sequential proteolytic cleavages of the receptor by the ADAM protease and the γ-secretase complex. The intracellular domain of Notch is released and then translocates to the nucleus where it activates transcription. Notch ligands may also be processed in a way similar to Notch, suggesting a bi-directional signaling through receptor-ligand interactions (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Notch signaling is activated upon engagement of the Notch receptor with its ligands, the DSL (Delta, Serrate, Lag2) proteins of single-pass type I membrane proteins. The DSL proteins contain multiple EGF-like repeats and a DSL domain that is required for binding to Notch (1,2). Five DSL proteins have been identified in mammals: Jagged1, Jagged2, Delta-like (DLL) 1, 3 and 4 (3). Ligand binding to the Notch receptor results in two sequential proteolytic cleavages of the receptor by the ADAM protease and the γ-secretase complex. The intracellular domain of Notch is released and then translocates to the nucleus where it activates transcription. Notch ligands may also be processed in a way similar to Notch, suggesting a bi-directional signaling through receptor-ligand interactions (4-6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Retinoblastoma-associated proteins 46 and 48 (RBAP46 and RBAP48; also known as RBBP7 and RBBP4) were first characterized in human cells as proteins that bind to the retinoblastoma (Rb) tumor suppressor protein (1). Since then, these proteins have been shown to be components of many protein complexes involved in chromatin regulation, including the chromatin assembly factor 1 (CAF-1) complex and type B histone acetyltransferase complex HAT1, both of which function in chromatin assembly during DNA replication (2,3). RBAP46 and RBAP48 are also found in the nucleosome remodeling factor complex NURF, the nucleosome remodeling and histone de-acetylation complex NuRD, and the Sin3/HDAC histone de-acetylation complex (4-7). More recently, RBAP46 and RBAP48 were identified as components of the polycomb repressor complex PRC2, which also contains EED and Ezh2 (8). RBAP46 and RBAP48 bind to the histone fold region of histone H4 and are believed to target these chromatin remodeling, histone acetylation, and histone de-acetylation complexes to their histone substrates (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: WIF1 (Wnt inhibitory factor 1) is a secreted protein that binds to Wnt proteins and inhibits their activity (1). It contains an N-terminal WIF domain and five EGF-like repeats (2). The WIF1 ortholog in Drosophila, Shifted, is required for Hedgehog stability and diffusion (3,4). It has been reported that WIF1 expression is downregulated in many types of cancers (5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The mediator complex consists of about 25-30 proteins and is thought to facilitate transcription activation by acting as a molecular bridge between the RNA polymerase II (RNAPII) machinery and transcription factors (1). Mediator is recruited to target genes by transcription factors and plays an essential role in the recruitment and stabilization of the RNAPII transcription complex at promoters, as well as the activation of transcription post RNAPII recruitment (1-5). The mediator complex also plays an important role in creating ‘chromatin loops’ that occur as a result of interactions between the transcription factor bound at distal enhancers and RNAPII bound at the proximal promoter, and works to sustain proper chromatin architecture during active transcription (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Western Blotting

Background: Mammalian sterile-20-like (MST) kinases are upstream regulators of mitogen-activated protein kinase (MAPK) signaling pathways that regulate multiple biological processes, including apoptosis, morphogenesis, cell migration, and cytoskeletal rearrangements (1). This group of serine/threonine kinases includes a pair of closely related proteins (MST1, MST2) that are functionally distinct from the more distantly related MST3 and MST4 kinases. All four MST kinases share a conserved amino-terminal kinase domain and carboxy-terminal regulatory and interaction domains (1-3). At least three of these kinases (MST1-3) promote apoptosis and are activated by caspase cleavage followed by nuclear translocation of the active kinase. MST1/2 kinases play a key role in the Hippo signaling pathway, an evolutionarily conserved program that controls organ size by regulating cell proliferation, apoptosis, and stem cell self renewal (4).Mammalian Sterile 20-like kinase 3 (MST3, STK24) is ubiquitously expressed as a longer MST3b isoform and a shorter MST3a protein lacking a portion of the amino-terminal region (5). The widely expressed MST3a protein regulates apoptosis and cell motility, as well as neuronal migration during CNS development (6,7). MST3 phosphorylates and activates the NDR protein kinases that regulate cell cycle progression and cell morphology (8). Autophosphorylation of MST3 at Thr178 is required for in vitro kinase activity, and alteration of this residue inhibits MST3 regulation of cell migration in vivo (7). The brain-specific MST3b protein is activated by nerve growth factor or inosine and localizes to neurons where it helps regulate axon growth and regeneration (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: ADP-ribosylation factor (Arf) proteins are low molecular weight GTP binding proteins that belong to the Ras GTPase superfamily (1). Arf proteins are grouped into three distinct classes based on amino acid sequence and structural similarity, with Arf6 as the single class III protein to date. Arf6 is localized mainly to the plasma membrane and endosomes (1,2). This small GTPase interacts with PIP5K, PLD and Rac1, proteins important in lipid metabolism and actin regulation. Arf6 function depends upon its cycling between GDP- and GTP-bound states, which is regulated by associated GAP and GEF factors (3,4). Plasma membrane-associated Arf6 appears to play several functions during the many steps of membrane trafficking, including regulating membrane receptor internalization in both clathrin-dependent and independent pathways, endosomal recycling, and proximal actin reorganization and remodeling (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Mig6 was identified as a gene which is induced when quiescent fibroblasts are treated by mitogens (1). During cell cycle progression, Mig6 expression levels are also regulated (1). Mig6 mRNA levels were found to increase upon stimulation by chronic stresses including diabetic nephropathy (2). Overexpression of this gene leads to the activation of stress-activated protein kinases (SAPKs)/c-Jun amino-terminal kinases (JNKs) (2). Furthermore, Mig6 was found to interact with epidermal growth factor receptor (EGFR) when stimulated by epidermal growth factor (EGF) (3). Deletion of the Mig6 gene in mice results in hyperactivation of EGFR and signaling through the mitogen-activated protein kinase (MAPK) pathway, causing overproliferation and abnormal differentiation of epidermal keratinocytes in these animals. Inhibition of endogenous EGFR signaling by Iressa abolished skin defects observed in Mig6(-/-) mice, indicating that Mig6 is a specfic negative regulator of EGFR signaling (4). Furthermore, expression of Mig6 was significantly lower in skin, breast, pancreatic and ovarian cancers, suggesting a role of Mig6 as a tumor suppressor (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The type 1 insulin-like growth factor receptor (IGF1R) is a transmembrane receptor tyrosine kinase that is widely expressed in many cell types in fetal and postnatal tissues, and which is highly similar in sequence and structure to the insulin receptor (1-4). IGF1R is synthesized as a preproprotein which is proteolytically cleaved into alpha and beta subunits. Receptor assembly involves heterodimerization of two alpha and two beta subunits to generate the heterotetrameric transmembrane receptor. The alpha subunits form the extracellular ligand binding domain; ligand binding by IGF-I or IGF-II initiates autophosphorylation of conserved intracellular residues in the beta subunit kinase domain, leading to kinase activation and subsequent activation of downstream signal transduction pathways (e.g., Akt and MAPK) (4-8). Enhanced mitogenic signaling through the IGF1R is frequently observed in cancer, making the IGF1R an important research target in translational oncology (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: DRB-sensitivity inducing factor (DSIF), a heterodimer composed of SPT4 and SPT5, is capable of both facilitating and inhibiting RNA polymerase II (RNAPII) activity (1-3). DSIF, together with NELF (Negative Elongation Factor), inhibits RNAPII elongation, resulting in promoter proximal pausing of RNAPII as it awaits additional signaling to resume transcription (4). The release of promoter proximal pausing is signaled through phosphorylation of the RNAPII C-terminal domain (CTD) and NELF by positive transcription elongation factor (P-TEFb) (5). P-TEFb also phosphorylates SPT5 at Thr4 within the evolutionarily conserved heptapeptide repeat motif. This phosphorylation event switches DSIF from a transcriptional repressor to an activator where it becomes a critical factor for transcriptional elongation (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Evi-1 (Ecotropic virus integration site 1) was originally identified as a common site of viral integration in murine myeloid leukemia. It is involved in human myeloid disorders through chromosome translocation and inversion (1) and is also implicated in solid tumor formation (2). Evi-1 is a zinc finger transcription factor which also plays an important role in animal development (3). It has many isoforms due to alternative usage of 5'-ends (4), alternative splicing (5), and intergenic splicing which results in the formation of a fusion protein with MDS1 in normal tissues (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: The polycomb group (PcG) proteins contribute to the maintenance of cell identity, stem cell self-renewal, cell cycle regulation, and oncogenesis by maintaining the silenced state of genes that promote cell lineage specification, cell death, and cell-cycle arrest (1-4). Polycomb group proteins regulate cell proliferation and senescence through repression of the p16Ink4a and p19Arf genes, and are essential in maintaining adult hematopoietic, neural stem cells, and embryonic stem cells (3-5). PcG proteins are found in two complexes that cooperate to maintain long-term gene silencing through epigenetic chromatin modifications. DNA-binding transcription factors recruit the EED-EZH2 complex to genes, which methylates histone H3 on Lys27 (6). Methylation of Lys27 facilitates the recruitment of the PRC1 complex, which ubiquitinylates histone H2A on Lys119 (7). PRC1 is composed of BMI1 and RING1A, which enhance the E3 ubiquitin ligase activity of the RING1B catalytic subunit (8). Polyhomeotic-like 1 (PHC1) is one of several additional PRC1 complex proteins that are required to maintain the silenced state of PRC1 target genes and mediate proper anterior-posterior specification during development (9). Mutations in the corresponding PHC1 gene correlate with an autosomal recessive form of primary microcephaly characterized by low-to-normal cognitive function and impaired DNA repair (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Endogenous cannabinoids have been implicated in addictive behaviors and drug abuse (1). Fatty-acid amide hydrolase 1 (FAAH1) is a plasma membrane-bound hydrolase that converts oleamide to oleic acid (2). This hydrolase also converts the cannabinoid anandamide, the endogenous ligand for the CB1 cannabinoid receptor, to arachidonic acid, suggesting a role in fatty-acid amide inactivation (2). Mice lacking FAAH1 have significantly higher levels of anandamide in the brain and show decreased sensitivity to pain, further indicating a role for FAAH1 in the regulation of endocannabinoid signaling in vivo (3). FAAH1 null mice also demonstrate an increased preference for alcohol and an increased voluntary uptake of alcohol as compared to wild-type mice, indicating a role of FAAH1 in modulating addictive behaviors (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: ATP-dependent chromatin remodeling complexes play an essential role in the regulation of nuclear processes such as transcription and DNA replication and repair (1,2). The SWI/SNF chromatin remodeling complex consists of more than 10 subunits and contains a single molecule of either BRM or BRG1 as the ATPase catalytic subunit. The activity of the ATPase subunit disrupts histone-DNA contacts and changes the accessibility of crucial regulatory elements to the chromatin. The additional core and accessory subunits play a scaffolding role to maintain stability and provide surfaces for interaction with various transcription factors and chromatin (2-5). The interactions between SWI/SNF subunits and transcription factors, such as nuclear receptors, p53, Rb, BRCA1, and MyoD, facilitate recruitment of the complex to target genes for regulation of gene activation, cell growth, cell cycle, and differentiation processes (1,6-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: PASK is a serine/threonine kinase that contains two PAS (Per-Arnt-Sim) domains (1). Its kinase activity is up-regulated by autophosphorylation of the activation loop within its catalytic domain and is inhibited in cis by one of the PAS domains (1). Studies found that the yeast homolog of PASK phosphorylates and inhibits two enzymes required for glycogen biosynthesis: UDP-glucose pyrophosphorylase and glycogen synthase, resulting in the decrease of carbohydrate storage (2). Further studies showed that increased glucose levels activate PASK activity and enhance its expression in pancreatic β-cells (3). PASK is essential for the glucose-stimulated expression of preproinsulin and Pdx1, suggesting its role in the regulation of genes involved in pancreatic β-cell functions (3). PASK was shown to be critical for glucose-stimulated insulin secretion in pancreatic β-cells (4). The absence of PASK also protects animals from obesity and insulin resistance when they are fed a high-fat diet (4). These findings suggest that PASK functions as an important metabolic sensor in various cells (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: YKL-40, also known as Chitinase-3-like protein 1 (CHI3L1), is a secreted glycoprotein encoded by the CHI3L1 gene (1,2). Unlike other members of the chitinase-like protein family, YKL-40 is not an active chitinase. It is produced by activated macrophages, chondrocytes, neutrophils, and synovial cells. It is a pro-inflammatory molecule that contributes to the progression of many inflammatory diseases, including fibrosis, neurodegenerative disease, breast, lung, prostate, liver, bladder, colon, and other types of cancers (3,4). Levels of YKL-40 in serum and plasma in patients with various types of tumors have been reported to predict poor prognosis, and in some clinical assays YKL-40 is being used as a predictive biomarker of cancer outcome (4).

$262
3 nmol
300 µl
SignalSilence® Glucocorticoid Receptor siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit glucocorticoid receptor expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Glucocorticoid hormones control cellular proliferation, inflammation, and metabolism through their association with the glucocorticoid receptor (GR)/NR3C1, a member of the nuclear hormone receptor superfamily of transcription factors (1). GR is composed of several conserved structural elements, including a carboxy-terminal ligand-binding domain (which also contains residues critical for receptor dimerization and hormone-dependent gene transactivation), a neighboring hinge region containing nuclear localization signals, a central zinc-finger-containing DNA-binding domain, and an amino-terminal variable region that participates in ligand-independent gene transcription. In the absence of hormone, a significant population of GR is localized to the cytoplasm in an inactive form via its association with regulatory chaperone proteins, such as HSP90, HSP70, and FKBP52. On hormone binding, GR is released from the chaperone complex and translocates to the nucleus as a dimer to associate with specific DNA sequences termed glucocorticoid response elements (GREs), thereby enhancing or repressing transcription of specific target genes (2). It was demonstrated that GR-mediated transcriptional activation is modulated by phosphorylation (3-5). Although GR can be basally phosphorylated in the absence of hormone, it becomes hyperphosphorylated upon binding receptor agonists. It has been suggested that hormone-dependent phosphorylation of GR may determine target promoter specificity, cofactor interaction, strength and duration of receptor signaling, receptor stability, and receptor subcellular localization (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: TRAFs (TNF receptor-associated factors) are a family of multifunctional adaptor proteins that bind to surface receptors and recruit additional proteins to form multiprotein signaling complexes capable of promoting cellular responses (1-3). Members of the TRAF family share a common carboxy-terminal "TRAF domain", which mediates interactions with associated proteins; many also contain amino-terminal Zinc/RING finger motifs. The first TRAFs identified, TRAF1 and TRAF2, were found by virtue of their interactions with the cytoplasmic domain of TNF-receptor 2 (TNFRII) (4). The six known TRAFs (TRAF1-6) act as adaptor proteins for a wide range of cell surface receptors and participate in the regulation of cell survival, proliferation, differentiation, and stress responses.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The Fos family of nuclear oncogenes includes c-Fos, FosB, Fos-related antigen 1 (FRA1), and Fos-related antigen 2 (FRA2) (1). While most Fos proteins exist as a single isoform, the FosB protein exists as two isoforms: full-length FosB and a shorter form, FosB2 (Delta FosB), which lacks the carboxy-terminal 101 amino acids (1-3). The expression of Fos proteins is rapidly and transiently induced by a variety of extracellular stimuli including growth factors, cytokines, neurotransmitters, polypeptide hormones, and stress. Fos proteins dimerize with Jun proteins (c-Jun, JunB, and JunD) to form Activator Protein-1 (AP-1), a transcription factor that binds to TRE/AP-1 elements and activates transcription. Fos and Jun proteins contain the leucine-zipper motif that mediates dimerization and an adjacent basic domain that binds to DNA. The various Fos/Jun heterodimers differ in their ability to transactivate AP-1 dependent genes. In addition to increased expression, phosphorylation of Fos proteins by Erk kinases in response to extracellular stimuli may further increase transcriptional activity (4-6). Phosphorylation of c-Fos at Ser32 and Thr232 by Erk5 increases protein stability and nuclear localization (5). Phosphorylation of FRA1 at Ser252 and Ser265 by Erk1/2 increases protein stability and leads to overexpression of FRA1 in cancer cells (6). Following growth factor stimulation, expression of FosB and c-Fos in quiescent fibroblasts is immediate, but very short-lived, with protein levels dissipating after several hours (7). FRA1 and FRA2 expression persists longer, and appreciable levels can be detected in asynchronously growing cells (8). Deregulated expression of c-Fos, FosB, or FRA2 can result in neoplastic cellular transformation; however, Delta FosB lacks the ability to transform cells (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The differentiation process of neurons can be divided into five stages, each stage characterized by morphological changes observed in the developing cells. In stage 1, the cells extend lamellipodia and in stage 2 their lamellipodia develop into immature neurites. In stage 3 one neurite elongates rapidly to form an axon and in stage 4 the remaining immature neuritis elongate to form dendrites. In stage 5 synaptic contacts are formed and a neuronal network is established (1).Shootin1 is involved in generating internal asymmetric signals required for neuronal during stages 2 and 3. The extension of an axon requires considerable reorganization of the cytoskeleton mediated by PI3K/Akt and PI3K/Cdc42 signaling (1). Shootin1 is involved in regulating the subcellular localization of PI3 kinase. Furthermore, shootin1 is upregulated during polarization and accumulates asymmetrically in a single neurite that consequently elongates rapidly to form an axon (2).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Proliferating cell nuclear antigen (PCNA) is a member of the DNA sliding clamp family of proteins that assist in DNA replication (1). PCNA associated factor (PAF15) interacts with PCNA to recruit DNA replicative polymerase. In response to DNA damage, PCNA recruits a low fidelity DNA polymerase to allow bypass of lesions that would otherwise stall DNA replication. This form of DNA damage tolerance is called translesion synthesis (TLS), and is regulated in part by PAF15 (2,3). Ubiquitination of PAF15 at lysines 15 and 24 regulates its interactions with PCNA and DNA polymerase (3). PAF15 is overexpressed in human cancers, and research studies show a correlation between PAF15 expression and poor prognosis (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: RBPSUH (Recombining Binding Protein, SUppressor of Hairless), also termed RBP-J or CSL, is the DNA-binding component of the transcription complex regulated by canonical Notch signaling. In the absence of Notch activation, RBPSUH suppresses target gene expression through interactions with a co-repressor complex containing histone deacetylase. Upon activation of Notch receptors, the Notch intracellular domain (NICD) translocates to the nucleus and binds to RBPSUH. This displaces the co-repressor complex and replaces it with a transcription activation complex that includes Mastermind-like (MAML) proteins and histone acetylase p300, leading to transcriptional activation of Notch target genes (1-3). RBPSUH is also the DNA-binding partner for Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2), a protein critical for latent viral transcription and immortalization of EBV-infected B cells (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Striatal enriched phosphatase (STEP, also known as PTPN5), is a protein tyrosine phosphatase expressed in dopaminoceptive neurons of the central nervous system (1). Alternative splicing produces the cytosolic STEP46 and the membrane-associated STEP61 isoforms of STEP. Dopamine activates D1 receptors and PKA, which in turn phosphorylate both isoforms of STEP. Phosphorylation of STEP61 occurs at Ser160 and Ser221, while STEP46 is phosphorylated at Ser49 (equivalent to Ser221 of STEP61) (2). NMDA-mediated activation of STEP is an important mechanism for regulation of Erk activity in neurons (3). Furthermore, STEP is involved in the regulation of both NMDAR and AMPAR trafficking (4,5). Due to its importance in cognitive function, STEP may play a role in Alzheimer's disease (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: AMPA- (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), kainite- and NMDA- (N-methyl-D-aspartate) receptors are the three main families of ionotropic glutamate-gated ion channels. AMPA receptors (AMPARs) are comprised of four subunits (GluR 1-4) that assemble as homo- or hetero-tetramers and mediate the majority of fast excitatory transmissions in the CNS. AMPARs are implicated in synapse formation, stabilization and plasticity. Post-transcriptional modifications (alternative splicing and nuclear RNA editing) and post-translational modifications (glycosylation, phoshorylation) result in a very large number of permutations, fine-tuning the kinetic properties of AMPARs (1). GluR 3 knockout mice exhibited normal basal synaptic transmission and long-term depression (LTD) but enhanced long-term potentiation (LTP). In contrast, GluR 2/3 double knockout mice are impaired in basal synaptic transmission (2). Aberrant GluR 3 expression or activity is implicated in a number of diseases, including autoimmune epilepsy, X-linked mental retardation, Rett's syndrome, amyotrophic lateral sclerosis and Alzheimer disease (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Glutamatergic neurons release glutamate, the most common excitatory neurotransmitter. Their synaptic vesicles are filled with glutamate by vesicular glutamate transporters, VGLUTs (1). VGLUT1, also called solute carrier family 17 member 7 (SLC17A7), was first identified as an inorganic phosphate transporter (2). Despite the absence of homology with neurotransmitter transporters, VGLUT1 was later demonstrated to be a glutamate transporter (1) specific to glutamatergic neurons (3). Closely related to VGLUT1, VGLUT2 and VGLUT3 are also involved in glutamate uptake into synaptic vesicles, but define different neuronal subpopulations (4,5). VGLUT1 and VGLUT2 are the most abundant isoforms. VGLUT1 is expressed in the cortex, hippocampus, and cerebellar cortex, while VGLUT2 is mostly found in the thalamus (6,7). VGLUT3 is expressed in hair cells of the auditory system (8).