Interested in promotions? | Click here >>

Product listing: GCNF Antibody, UniProt ID Q15406 #5417 to MSL2 (D4V2N) Rabbit mAb, UniProt ID Q9HCI7 #44006

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: GCNF (Germ Cell Nuclear Factor), also known as NR6A1 (Nuclear Receptor Subfamily 6 Group A member), is an orphan member of the nuclear receptor gene superfamily (1). It has been shown to be expressed in the nervous system during development and during specific stages in maturing germ cells of the ovary and testis in the adult, and has probable roles in gametogenesis, neurogenesis, and normal embryonic development during gastrulation (1,2). Inactivation of GCNF in mouse results in abnormal posterior development, impaired midbrain development, insufficient closure of the neural tube, and eventual embryonic death (3). GCNF has been shown to be a repressor of OCT-4 and of the protamine genes (4,5) and plays a critical role in the control of gene expression during embryogenesis and spermatogenesis (2,6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: FAM3C, also known as ILEI (interleukin-like epithelial-to-mesenchymal transition [EMT] inducer), is a cytokine-like protein and member of the FAM3 family. FAM3C plays an important role in EMT and metastasis during cancer progression in human and mouse cells, and is highly expressed in human cancer (1,2). In colorectal cancer, researchers have indicated that FAM3C is a marker for EMT and tumor progression, and that high expression of FAM3C is predictive of poor prognosis (3). While EMT induction by FAM3C can be independent of TGF-beta, research studies have also shown TGF-beta-dependent regulation of FAM3C expression at the translational level in mouse and human cells (4,5).FAM3C has also been linked to regulation of osteoblast differentiation (6), and to accumulation of amyloid beta plaques in Alzheimer’s disease (7). FAM3C exists in monomeric and in homodimeric form, and research shows that FAM3C homodimers contain its EMT-inducing and tumor promoting activity (8).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Sox2 (D9B8N) Rabbit mAb #23064.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Embryonic stem cells (ESC) derived from the inner cell mass of the blastocyst are unique in their pluripotent capacity and potential for self-renewal (1). Research studies demonstrate that a set of transcription factors that includes Oct-4, Sox2, and Nanog forms a transcriptional network that maintains cells in a pluripotent state (2,3). Chromatin immunoprecipitation experiments show that Sox2 and Oct-4 bind to thousands of gene regulatory sites, many of which regulate cell pluripotency and early embryonic development (4,5). siRNA knockdown of either Sox2 or Oct-4 results in loss of pluripotency (6). Induced overexpression of Oct-4 and Sox2, along with additional transcription factors Klf4 and c-Myc, can reprogram both mouse and human somatic cells to a pluripotent state (7,8). Additional evidence demonstrates that Sox2 is also present in adult multipotent progenitors that give rise to some adult epithelial tissues, including several glands, the glandular stomach, testes, and cervix. Sox2 is thought to regulate target gene expression important for survival and regeneration of these tissues (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Chromatin IP, Flow Cytometry, Immunoprecipitation, Western Blotting

Background: PHD finger protein 8 (PHF8) is a histone lysine demethylase that functions as a transcriptional activator by specifically demethylating a number of repressive histone methylation marks: mono- and di-methyl-histone H3 Lys9 (H3K9me1 and H3K9me2), di-methyl-histone H3 Lys27 (H3K27me2) and mono-methyl-histone H4 Lys20 (H4K20me1). PHF8 contains an N-terminal zinc finger-like PHD domain that binds tri-methylated histone H3 Lys4 (H3K4Me3) and a C-terminal jumonji domain that is responsible for the demethylase activity (1). Deletion and point mutations (F279S) in the jumonji domain of PHF8 are associated with the onset of X-linked mental retardation (XLMR). In addition, PHF8 is highly expressed in prostate cancer, laryngeal squamous cell carcinoma, and human non-small-cell lung cancer (NSCLC). Its expression is predictive of poor survival (2-4). Overexpression of PHF8 increases cell proliferation and cell motility, while silencing of PHF8 reduces cell proliferation, migration, and invasion (4).

$260
100 µl
APPLICATIONS

Application Methods: Western Blotting

Background: Digoxigenin (DIG) is a highly immunogenic steroid derived from “foxglove” plants of the genus Digitalis (1). This small hapten molecule can be covalently linked to proteins, nucleic acids, compounds, and glycans. Antibodies targeted against the DIG hapten display high binding affinity to DIG-conjugated molecules and can be used in molecular biology assays, including in situ hybridization, western blot, ELISA, and TUNEL assays (2-4).

$262
3 nmol
300 µl
SignalSilence® USP9X siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit USP9X expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Protein ubiquitination and deubiquitination are reversible processes catalyzed by ubiquitinating enzymes (UBEs) and deubiquitinating enzymes (DUBs) respectively (1,2). DUBs are categorized into five subfamilies-USP, UCH, OTU, MJD, and JAMM. Ubiquitin-specific protease 9, X-linked (USP9X) possesses a well-conserved catalytic domain with cysteine peptidase activity, which allows for cleavage of ubiquitin and polyubiquitin conjugates. USP9X is the mammalian homolog of the Drosophila fat-facets (faf) gene, which is essential for normal eye development and viability of the early fly embryo (3,4). While USP9X expression is also critical for normal mammalian development (5-7), many of its substrates are only beginning to be elucidated. There is mounting evidence that USP9X functions in the formation of epithelial cell-cell contacts through deubiquitination-dependent stabilization of molecules involved in maintaining the integrity of both adherens and tight junctions. Indeed, USP9X has been found to associate with AF-6, the β-catenin-E-cadherin complex, and EFA6 (8-11). Research studies have also demonstrated that USP9X is an integral component of the TGF-β/BMP signaling cascade by opposing TRIM33-mediated monoubiquitination of SMAD4 (12). USP9X is overexpressed in a variety of human cancers and contributes to enhanced cell survival, in part, through its ability to deubiquitinate and stabilize the Mcl-1 oncoprotein (13). There is some evidence, however, that suggests the role of USP9X in tumorigenesis is context dependent. Research studies have implicated USP9X in a tumor suppressor role during the early stages of pancreatic ductal adenocarcinoma (PDAC) and in an oncogenic role during advanced stages of PDAC (14,15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: RING finger and CHY1 zinc finger domain-containing protein 1 (RCHY1) is a newly identified RING-H2-type protein-ubiquitin E3 ligase that is expressed as multiple isoforms generated through alternative splicing of mRNA transcripts (1,2). Notably, RCHY1 is a p53-regulated gene and multiple studies have shown that RCHY1 directly binds p53 to promote its ubiquitin-dependent proteasomal degradation, ultimately leading to repression of p53 growth suppressive transcriptional activity (1,3). RCHY1 is also likely to promote deregulated cell proliferation by targeting the CDK inhibitor, p27 Kip1, for proteasomal degradation (4). In agreement with its growth promoting activity, RCHY1 overexpression has been linked to cancer of the lung (5,6) and prostate (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: La antigen is recognized by antibodies in patients with autoimmune disorders such as systemic lupus erythematosus and Sjögren's syndrome (1). La antigen binds to the 5'-noncoding region of poliovirus RNA and is an IRES trans-acting factor (1,2). Depletion of La antigen reduces the function of poliovirus IRES in vivo (3). La antigen, when phosphorylated at Ser366, has been shown to associate with nuclear precursor tRNAs and facilitate their processing (4). The nonphosphorylated La antigen interacts with the mRNAs that have 5'-terminal oligopyrimidine (5'TOP) motifs to control protein synthesis (4).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated CD44 (156-3C11) Mouse mAb #3570.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD44 is a type I transmembrane glycoprotein that mediates cell-cell and cell-matrix interaction through its affinity for hyaluronic acid (HA) and possibly through other parts of the extracellular matrix (ECM). CD44 is highly polymorphic, possesses a number of alternative splice variants and undergoes extensive post-translational modifications (1,2). Increased surface levels of CD44 are characteristic of T cell activation, and expression of the protein is upregulated during the inflammatory response. Research studies have shown that interactions between CD44 and HER2 are linked to an increase in ovarian carcinoma cell growth (1-3). CD44 interacts with ezrin, radixin and moesin (ERM), linking the actin cytoskeleton to the plasma membrane and the ECM (4-6). CD44 is constitutively phosphorylated at Ser325 in resting cells. Activation of PKC results in phosphorylation of Ser291, dephosphorylation of Ser325, disassociation of ezrin from CD44, and directional motility (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: BCAT1 and BCAT2 are cytosolic and mitochondrial branched chain aminotransferases, respectively (1,2). Research studies have implicated BCAT1 in distant metastasis in patients with advanced colorectal cancer (3). Disruption of BCAT2 in mice leads to higher levels of plasma branched-chain amino acids, reduced adiposity and body weight, and increased energy expenditure, suggesting its role in regulating insulin sensitivity (4).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated NUP98 (C39A3) Rabbit mAb #2598.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Nucleoporin 98 kDa (NUP98) is a component of the nuclear pore complex. It is expressed as three different precursors that undergo auto-cleavage to generate a common amino-terminal 98 kDa peptide (NUP98) and carboxy-terminal 6, 96 (NUP96) and 88 (p88) kDa peptides (1,2). NUP98 contains FG and GLFG repeat domains at its amino terminus and a RNA-binding domain in its carboxy terminus (3). The NUP98 gene is localized on chromosome 11p15.5, a region frequently rearranged in leukemias. To date, 15 fusion partners have been identified for NUP98 (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Apolipoproteins are plasma lipoproteins that function as transporters of lipids and cholesterol in the circulatory system. Chylomicrons are a fundamental class of apolipoproteins containing very low-density lipoproteins (VLDL), intermediate-density lipoproteins (IDL), low-density lipoproteins (LDL), and high-density lipoproteins (HDL) (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Despite their relatively small size (8-12 kDa) and uncomplicated architecture, S100 proteins regulate a variety of cellular processes such as cell growth and motility, cell cycle progression, transcription, and differentiation. To date, 25 members have been identified, including S100A1-S100A18, trichohyalin, filaggrin, repetin, S100P, and S100Z, making it the largest group in the EF-hand, calcium-binding protein family. Interestingly, 14 S100 genes are clustered on human chromosome 1q21, a region of genomic instability. Research studies have demonstrated that significant correlation exists between aberrant S100 protein expression and cancer progression. S100 proteins primarily mediate immune responses in various tissue types but are also involved in neuronal development (1-4).Each S100 monomer bears two EF-hand motifs and can bind up to two molecules of calcium (or other divalent cation in some instances). Structural evidence shows that S100 proteins form antiparallel homo- or heterodimers that coordinate binding partner proximity in a calcium-dependent (and sometimes calcium-independent) manner. Although structurally and functionally similar, individual members show restricted tissue distribution, are localized in specific cellular compartments, and display unique protein binding partners, which suggests that each plays a specific role in various signaling pathways. In addition to an intracellular role, some S100 proteins have been shown to act as receptors for extracellular ligands or are secreted and exhibit cytokine-like activities (1-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: The 25 kDa synaptosome-associated protein (SNAP25) is a target membrane soluble, N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) that is found on neuronal presynaptic membranes. SNAP25 forms a core complex with the SNARE proteins syntaxin and synaptobrevin to mediate synaptic vesicle fusion with the plasma membrane during Ca2+-dependent exocytosis (1). This complex is responsible for exocytosis of the neurotransmitter γ-aminobutyric acid (GABA). Neurotransmitter release is inhibited by proteolysis of SNAP25 by botulinum toxins A and E (2). SNAP25 plays a secondary role as a Q-SNARE involved in endosome fusion; the protein is associated with genetic susceptibility to attention-deficit hyperactivity disorder (ADHD) (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 20S proteasome is the major proteolytic enzyme complex involved in intracellular protein degradation. It consists of four stacked rings, each with seven distinct subunits. The two outer layers are identical rings composed of α subunits (called PSMAs), and the two inner layers are identical rings composed of β subunits. While the catalytic sites are located on the β rings (1-3), the α subunits are important for assembly and as binding sites for regulatory proteins (4). Seven different α and ten different β proteasome genes have been identified in mammals (5). PA700, PA28, and PA200 are three major protein complexes that function as activators of the 20S proteasome. PA700 binds polyubiquitin with high affinity and associates with the 20S proteasome to form the 26S proteasome, which preferentially degrades poly-ubiquitinated proteins (1-3). The proteasome has a broad substrate spectrum that includes cell cycle regulators, signaling molecules, tumor suppressors, and transcription factors. By controlling the degradation of these intracellular proteins, the proteasome functions in cell cycle regulation, cancer development, immune responses, protein folding, and disease progression (6-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: PHD finger protein 8 (PHF8) is a histone lysine demethylase that functions as a transcriptional activator by specifically demethylating a number of repressive histone methylation marks: mono- and di-methyl-histone H3 Lys9 (H3K9me1 and H3K9me2), di-methyl-histone H3 Lys27 (H3K27me2) and mono-methyl-histone H4 Lys20 (H4K20me1). PHF8 contains an N-terminal zinc finger-like PHD domain that binds tri-methylated histone H3 Lys4 (H3K4Me3) and a C-terminal jumonji domain that is responsible for the demethylase activity (1). Deletion and point mutations (F279S) in the jumonji domain of PHF8 are associated with the onset of X-linked mental retardation (XLMR). In addition, PHF8 is highly expressed in prostate cancer, laryngeal squamous cell carcinoma, and human non-small-cell lung cancer (NSCLC). Its expression is predictive of poor survival (2-4). Overexpression of PHF8 increases cell proliferation and cell motility, while silencing of PHF8 reduces cell proliferation, migration, and invasion (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The modulation of chromatin structure is an essential component in the regulation of transcriptional activation and repression. Modifications can be made by at least two evolutionarily conserved strategies, through the disruption of histone-DNA contacts by ATP-dependent chromatin remodelers, or by histone tail modifications including methylation and acetylation. One of the four classes of ATP-dependent histone remodelers is the SWI/SNF complex, the central catalytic subunit of which is Brg1 or the highly related protein hBRM (1). This SWI/SNF complex contains varying subunits but its association with either Brg1 or hBRM remains constant (1). SWI/SNF complexes have been shown to regulate gene activation, cell growth, the cell cycle and differentiation (1). Brg1/hBRM have been shown to regulate transcription through enhancing transcriptional activation of glucocorticoid receptors (2). Although usually associated with transcriptional activation, Brg1/hBRM have also been found in complexes associated with transcriptional repression including with HDACs, Rb and Tif1β (3-5). Brg1/hBRM plays a vital role in the regulation of gene transcription during early mammalian embryogenesis. In addition, Brg1/hBRM also play a role as a tumor suppressors and Brg1 is mutated in several tumor cell lines (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: The Eph receptors are the largest known family of receptor tyrosine kinases (RTKs). They can be divided into two groups based on sequence similarity and on their preference for a subset of ligands. While EphA receptors bind to a glycosylphosphatidylinositol-anchored ephrin A ligand, EphB receptors bind to ephrin B proteins that have a transmembrane and cytoplasmic domain (1,2). Research studies have shown that Eph receptors and ligands may be involved in many diseases including cancer (3). Both ephrin A and B ligands have dual functions. As RTK ligands, ephrins stimulate the kinase activity of Eph receptors and activate signaling pathways in receptor-expressing cells. The ephrin extracellular domain is sufficient for this function as long as it is clustered (4). The second function of ephrins has been described as "reverse signaling", whereby the cytoplasmic domain becomes tyrosine phosphorylated, allowing interactions with other proteins that may activate signaling pathways in the ligand-expressing cells (5).The EphA1 receptor preferentially binds ephrin-A1 as a ligand (6). This ligand-receptor interaction stimulates EphA1 signaling and regulates cell morphology and motility through the ILK-RhoA-ROCK pathway (7). The EphA1 gene has been associated with late-onset Alzheimer's diseases (8,9). The role of EphA1 in cancer development falls into two opposite categories. In some type of cancer such as prostate, gastric and liver cancer, high expression of EphA1 associates with cancer metastasis and invasion (10-12). For other types of cancers, such as colon cancer and nonmelanoma skin cancer, down-regulation of the protein correlates with cancer development (13,14). The bidirectional signaling modulation of Ephrin-Ephrin receptor interaction might contribute this paradox phenomena (15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The NDRG (N-Myc downstream-regulated gene) family consisting of NDRG1, NDRG2, NDRG3, and NDRG4 are structurally related proteins with roles in cell proliferation, differentiation, apoptosis, stress responses, and cell migration/metastasis (1-3). NDRG1 was originally identified as a protein that was upregulated in N-Myc knockout mice (1). Proteins in the NDRG family, particularly NDRG1 and NDRG2, have been reported to be down-regulated in various cancer tissues and have been suggested to function as a tumor suppressors (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: The Elongin complex is a heterotrimer composed of TCEB3/Elongin A, Elongin B (TCEB2), and Elongin C (TCEB1) subunits (1-3). The Elongin complex regulates the rate of RNA polymerase II (RNAPII) transcription elongation by releasing the transient pausing of RNAPII at multiple sites along the DNA. TCEB3/Elongin A is the transcriptionally active subunit, while Elongin B and C subunits play a regulatory role (3,4). TCEB3/Elongin A may be required for expression of a subset of cell cycle regulated genes, and embryonic stem (ES) cells lacking TCEB3/Elongin A show abnormalities in cell size, growth, and cell cycle distribution (5). In addition, the Elongin complex has been shown to interact with the cullin family and RING finger proteins Cul5/Rbx2 upon UV-induced DNA damage, removing arrested RNAPII at sites of DNA damage by ubiquitination and degradation as part of an E3 ubiquitin ligase (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Interferon-stimulated 15 kDa protein (ISG15), also known as ubiquitin cross-reactive protein (UCRP), is a member of the ubiquitin-like protein family and functions in various biological pathways from pregnancy to innate immune responses (1). Expression of ISG15 is stimulated by cellular exposure to type 1 interferons α and β, in addition to infection with viruses such as influenza B (2,3). After exposure to type I interferons, both lymphocytes and monocytes, in addition to some fibroblasts and epithelial cells, release ISG15 into culture medium (1,4). ISG15 has been shown to function as a cytokine, stimulating interferon γ secretion by monocytes and macrophages, proliferation of natural killer cells, and chemotactic responses in neutrophils (4,5). ISG15 has also been shown to function intracellularly, being covalently conjugated to other proteins by E1 (Ube1L), E2 (UbcH8) and E3 ligases via a multi-step process analogous to ubiquitination (6,7). ISG15 is removed from proteins by the ubiquitin processing protease Ubp43 (8). ISG15-protein conjugation (ISGylation) is induced by type 1 interferons, and target proteins include the serine protease inhibitor Serpin 2A, PLCγ1, ERK1/2, Jak1 and Stat1 (9,10). Unlike ubiquitination, ISGylation does not target proteins for degradation, rather ISGylation increases Jak1 and Stat1 activity, enhancing the cellular response to interferons (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Filamins are a family of dimeric actin binding proteins that function as structural components of cell adhesion sites. They also serve as a scaffold for subcellular targeting of signaling molecules (1). The actin binding domain (α-actinin domain) located at the amino terminus is followed by as many as 24 tandem repeats of about 96 residues and the dimerization domain is located at the carboxy terminus. In addition to actin filaments, filamins associate with other structural and signaling molecules such as β-integrins, Rho/Rac/Cdc42, PKC and the insulin receptor, primarily through the carboxy-terminal dimerization domain (1-3). Filamin A, the most abundant, and filamin B are widely expressed isoforms, while filamin C is predominantly expressed in muscle (1). Filamin A is phosphorylated by PAK1 at Ser2152, which is required for PAK1-mediated actin cytoskeleton reorganization (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: MRP3/ABCC3 belongs to the super family of ATP-binding cassette (ABC) transporters. It is a member of the MRP subfamily that is expressed in various organs including liver, gallbladder, small intestine, colon, kidney, and adrenal gland (1-3). MRP3 is involved in multi-drug resistance (1). It facilitates the efflux of organic anions including monoanionic bile acid and anti-cancer reagents such as etoposide and paclitaxel from liver and small intestine into blood (4-7). Expression of MRP3 is increased in the cholestatic human and rat liver, suggesting its role in cholehepatic and enterohepatic bile circulation and in protecting liver from toxic bile salts (2,8). MRP3 expression is also upregulated in people with Dubin-Johnson Syndrome (DJS) who lack functional MRP2 in the liver, which implicates the compensatory role of MRP3 in the absence of functional MRP2 (4).Elevated expression of MRP3 has been detected in various cancer types such as hepatocellular carcinomas, primary ovarian cancer, and adult acute lymphoblastic leukemia (ALL) (9-11). Overexpression of MRP3 was reported to be a prognostic factor in ALL and adult acute myeloid leukemia (AML) (11,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Caveolae ("little caves") are 60-80 nm pits representing specialized plasma membrane domains in many cell types. The principal protein component of caveolae is caveolin, a small integral membrane protein composed of three family members, including the widely expressed caveolin-1 and -2, and the muscle-specific caveolin-3 (1). Caveolin proteins are required for caveolae formation and serve as scaffolding proteins for the recruitment of signaling proteins. Research studies in cavelolin-deficient mice implicate cavelolin proteins in several pathologies, including diabetes, cancer, cardiovascular diseases, atherosclerosis, pulmonary disease, and muscular dystrophies (2).The cavin proteins (cavin-1, -2, -3, and -4 in mammals) are a family of caveolae-associated integral membrane proteins involved in the biogenesis and stability of caveolae. Cavin proteins form homo- or hetero-oligomers whose composition is tissue-specific, which may confer distinct functions of caveolae in various tissues (3). Cavin-1 (PTRF), which is widely expressed, is required for caveolae formation and is thought to play roles in lipid metabolism, adipocyte differentiation, and IGF-1 receptor signaling (4-6). Research studies involving prostate cancer suggest that expression of cavin-1 is related to tumor progression and angiogenesis/lymphangiogenesis (7-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Centromere-associated protein E (CENP-E) is a kinesin-like motor protein and mitotic-checkpoint kinase BUB1B binding partner that is essential for establishing and maintaining stable attachments between mitotic chromosomes and spindle microtubules (1). CENP-E plays an important role as a motor protein in the alignment of chromosomes during prometaphase (2). Research studies indicate that CENP-E protein expression peaks in late G2 and M-phases of the cell cycle before the protein is degraded at mitotic exit (3). Additional studies show that the loss of CENP-E function results in cell cycle arrest in mitosis. Mutations in the corresponding CENPE gene can result in autosomal recessive primary microcephaly-13, a developmental disorder characterized by small head circumference, dysmorphic facial features, short stature, and delayed psychomotor development (4). Since CENP-E is essential for mitotic progression and is required for cellular proliferation, it has become an interesting target for cancer therapy (5-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: DNA double-strand breaks (DSBs) are potentially hazardous lesions that can be induced by ionizing radiation (IR), radiomimetic chemicals, or DNA replication inhibitors. Melanoma associated antigen (mutated) 1 (MUM1, EXPAND1) is a PWWP-domain containing chromatin binding protein involved in maintaining chromatin architecture of interphase chromosomes. In response to DNA damage, EXPAND1/MUM1 accumulates at sites of DNA double strand breaks through direct interaction with DNA repair factor 53BP1 (1). Accumulation of EXPAND1/MUM1 at damaged DNA sites is thought to modify the structure of the chromatin and allow access to other DNA repair factors (2). 53BP1 activates the checkpoint kinase ATM and promotes DNA double strand break repair via nonhomologous end joining (NHEJ) repair pathway (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The origin recognition complex (ORC) is a highly conserved heterohexameric protein complex that associates with DNA at or near initiation of DNA replication sites. All six ORC subunits are essential for initiation of DNA replication (1-3), and ORC may be involved in regulation of gene expression in response to stress (4). ORC binding to DNA permits the ordered binding of other proteins such as cdc6 and MCMs to form pre-replication complexes (Pre-RCs). Pre-RCs form between telophase and early G1 phase of the cell cycle and are inactivated at the onset of DNA synthesis, allowing coordinated regulation of DNA replication and cell division (5). Modification of one or more of the six ORC subunits may be responsible for its inactivation during S phase, but the chromatin binding behavior of the ORC subunits during the cell division cycle is still under investigation (6-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: SMARCAL1 was first identified as a ubiquitously expressed member of the SNF2 family with homology to the E. coli protein HepA (1). Mutations in the gene encoding SMARCAL1 were subsequently shown to be the cause of Schimke immuno-osseous dysplasia (SIOD), an autosomal recessive disorder characterized by phenotypes in multiple systems, including spondyloepiphyseal dysplasia, renal dysfunction, immunodeficiency, and impaired neurological function (2). Researchers have also associated SMARCAL1 deficiency with predisposition to non-Hodgkin's lymphoma (3). The array of phenotypes associated with SMARCAL1 is likely due to its role as an annealing helicase in the DNA damage response. During DNA replication stress, SMARCAL1 is phosphorylated by DNA repair kinases (ATM, ATR, DNA-PK) (4). SMARCAL1 deficiency sensitizes cells to replication stress agents, and appears to increase the frequency of replication fork breakdown (4,5). SMARCAL1 is also required for efficient DNA double strand break repair via the nonhomologous end joining (NHEJ) DNA repair pathway (6). Researchers have suggested that inhibitors targeting SMARCAL1 may be effective in sensitizing cancer cells to chemotherapeutic agents (reviewed in 7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TIE1 belongs to the Tie family of receptor tyrosine kinases. TIE1 is structurally similar to its homolog TIE2, but differs from the latter in that it does not have a known ligand and is thus considered an orphan receptor (1). A key function of TIE1 is to modulate TIE2 signaling, via heterodimerization with TIE2 at the cell surface (2). The effects of TIE1-TIE2 interaction are context-dependent; heterodimerization can either promote or inhibit downstream TIE2 signaling depending on localized TIE2 levels (3-6). Research studies have shown TIE1 to be implicated in angiogenesis, vascular maturation, tissue remodeling, and inflammation. Increased expression of TIE1 has also been associated with cancer stemness and atherosclerosis formation (7, 8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Male-specific lethal 2-homolog (MSL2) is a component of the male-specific lethal (MSL) histone acetyltransferase complex, which contains MSL1, MSL2, MSL3, and MYST1. MYST1, also known as mammalian male absent on the first (MOF) and lysine acetyltransferase 8 (KAT8), is a member of the MYST (MOZ, YBF2, SAS2, and Tip60) family of histone acetyltransferases (1,2) and functions as the catalytic subunit of the MSL complex. The MSL complex is responsible for the majority of acetylation on histone H4 lysine 16 (3-5). In addition, as part of the MSL complex, MSL1 and MSL2 function as an E3 ubiquitin ligase to mono-ubiquitylate histone H2B on lysine 34 (6). The MSL complex plays a critical role in the regulation of transcription, DNA repair, autophagy, apoptosis, and embryonic stem cell pluripotency and differentiation (1,2,6,7). Loss of MSL activity leads to a global reduction in histone H4 lysine 16 acetylation, a common hallmark found in many human cancers. In particular, the reduction of MYST1 protein levels and histone H4 lysine 16 acetylation is associated with poor prognosis in breast, renal, colorectal, gastric, and ovarian cancers (1).