Microsize antibodies for $99 | Learn More >>

Product listing: CD48 (D7L8I) XP® Rabbit mAb, UniProt ID P09326 #29499 to SignalSilence® Caspase-3 siRNA I, UniProt ID P42574 #6466

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Western Blotting

Background: CD48 is a glycosylphosphatidylinositol (GPI) -anchored membrane protein of the signaling lymphocyte activation molecule (SLAM) family, also known as SLAMF2 and BLAST-1. It is constitutively expressed on most hematopoietic cells (not on neutrophils and a subset of long-term hematopoietic stem cells in mice) and can be upregulated under certain conditions like infection (1). Interaction with its low affinity ligand CD2 promotes adhesion and TCR signaling (2,3). Interaction with the high affinity ligand CD244 (2B4) regulates natural killer (NK) and CD8 T cell activation and cytolytic function (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Presenilin 1 and presenilin 2 are transmembrane proteins belonging to the presenilin family. Mutation of presenilin genes has been linked to early onset of Alzheimer disease, probably due to presenilin's associated γ-secretase activity for amyloid-β protein processing (1,2). Endogenous presenilin mainly exists in a heterodimeric complex formed from the endoproteolytically processed amino-terminal (34 kDa) and carboxy-terminal (~20, 22, 23 kDa) fragments (CTF) (2,3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: RanBP3 was originally identified as RanGTP binding protein located in the nucleus and involved in the nuclear exporting process (1). It functions as a cofactor for CRM1 nuclear export by binding to CRM1, stabilizing the RanGTP-CRM1-cargo interaction and promoting complex association with nuclear pore proteins (2,3). In the absence of Ran-bound GTP, RanBP3 prevents binding of CRM1 complex to the nuclear pore complex. In addition to CRM1, RanBP3 also has been shown to bind to RanGEF-RCC1 and increase the guanine nucleotide exchange activity of RCC1 for RanGTP-CRM1-Cargo (1,4). In some cases, as with β-catenin and Smad2/3, RanBP3 binding may mediate the target protein nuclear export in a Ran-dependent, but CRM1-independent manner (5,6). RanBP3 is phosphorylated at Ser58 through the PI3K/Akt or ERK/RSK pathway. This phosphorylation is important for RanBP3 function in nuclear export, likely due to stimulation of RCC1 activity (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Phosphoinositide-specific phospholipase C (PLC) plays a significant role in transmembrane signaling. In response to extracellular stimuli such as hormones, growth factors, and neurotransmitters, PLC hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to generate two secondary messengers: inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) (1). At least four families of PLCs have been identified: PLCβ, PLCγ, PLCδ, and PLCε. Phosphorylation is one of the key mechanisms that regulate the activity of PLC. PLCγ is activated by both receptor and non-receptor tyrosine kinases (2). PLCγ forms a complex with EGF and PDGF receptors, which leads to the phosphorylation of PLCγ at Tyr771, 783, and 1248 (3). Phosphorylation by Syk at Tyr783 activates the enzymatic activity of PLCγ1 (4). PLCγ2 is engaged in antigen-dependent signaling in B cells and collagen-dependent signaling in platelets. Phosphorylation by Btk or Lck at Tyr753, 759, 1197, and 1217 is correlated with PLCγ2 activity (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: T-cell immunoreceptor with Ig and ITIM domains (TIGIT), also known as VSIG9, VSTM3, and WUCAM, is a member of the poliovirus receptor family of immunoglobulin proteins (1-3). TIGIT is expressed at low levels on subsets of T cells and NK cells, and is upregulated at the protein level following activation of these cells (1-4). TIGIT marks exhausted T cells in the tumor microenvironment (5) and during human immunodeficiency virus (HIV) infection (6). Research has shown TIGIT interacts with several receptors expressed on antigen presenting cells, such as dendritic cells and macrophages, as well as tumor cells and cells of the microenvironment. TIGIT binds with high affinity to PVR/CD155, and with low affinity to Nectin-2/CD112 and Nectin-3/CD113 (2,4,7). Upon binding to its ligands, TIGIT suppresses T cell activation, and inhibits T and NK cell cytotoxicity. This inhibition can be blocked using monoclonal antibodies directed at the ITIM domain of TIGIT, resulting in rejuvenated antigen-specific CD8+ T cell responses in tumors and during HIV infection (5,6,8). Three potential isoforms of TIGIT have been computationally mapped (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Sarcoplasmic and endoplasmic reticulum Ca2+ ATPases (SERCA) are members of a highly conserved family of Ca2+ pumps (1). SERCA pumps transport Ca2+ from the cytosol to the sarcoplasmic and endoplasmic reticulum lumen against a large concentration gradient (1). ATP2A1 (SERCA1) is a fast-twitch, skeletal muscle sarcoplasmic reticulum Ca2+ ATPase (2). Research studies have shown that mutations in the ATP2A1 gene cause an autosomal recessive muscle disorder known as Brody myopathy, which is characterized by muscle cramping and impaired muscle relaxation associated with exercise (1-3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: DNA interstrand crosslinks (ICLs) are toxic DNA lesions caused by environmental agents as well as some chemotherapeutic drugs. These lesions are repaired via multiple DNA repair pathways. HELQ (also known as HEL308) is a 3’-5’ DNA helicase that colocalizes with stalled DNA replication forks in response to DNA damage, and contributes to the repair of ICL lesions through ATR signaling (1,2). HELQ interacts with various DNA repair proteins, including FANCD2, RAD51, RAD51 paralogs, and ATR (1-3). HELQ-deficient mice exhibit reduced fertility as well as interstrand crosslink (ICL) repair defects, and are prone to tumors (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: CNPase (2', 3’-cyclic nucleotide 3'-phosphodiesterase) catalyzes the in vitro hydrolysis of 2’, 3’-cyclic nucleotides to produce 2’-nucleotides. The in vivo molecular function and native substrate of this nucleotide phosphodiesterase remains under investigation (1). High CNPase expression is seen in oligodendrocytes and Schwann cells as CNPase accounts for roughly 4% of the total myelin protein in the central nervous system (2). CNPase binds to tubulin heterodimers and plays a role in tubulin polymerization, and oligodendrocyte process outgrowth (3). Typical myelination is seen in CNPase knock-out mice, but they suffer severe neurodegeneration from axonal loss and oligodendrocytes display abnormal paranodal loop structure prior to axonal degeneration. Paranodal loops typically contact the axolemma in axon-glial signaling; neurodegeneration in CNPase knock-out mice is a secondary consequence of impaired cell-cell communication (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Rab11a, Rab11b, and Rab25 are members of the Rab11 subfamily of small Ras-like GTPases. Unlike universally expressed Rab11, typical Rab25 expression appears to be limited to gastrointestinal mucosa, kidney, and lung (1). Rab25 can associate with apical recycling vesicles to help regulate apical vesicle trafficking (2,3). Research studies indicate that atypical Rab25 expression can be associated with various forms of cancer. Increased Rab25 expression is associated with aggressive growth in ovarian and breast cancer, where Rab25 may inhibit apoptosis and promote cancer cell proliferation and invasion through regulation of vesicle transport and cellular motility (4-7). Interaction between Rab25 and β1 integrin promotes vesicle-mediated transport of integrin to pseudopodial tip membranes, fostering the persistent invasion of tumor cells (8). Conversely, the reported loss of Rab25 expression in a number of breast cancer cases has an unclear effect on cancer pathogenesis (9).

$262
3 nmol
300 µl
SignalSilence® TAK1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit TAK1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: TAK1 is a mitogen-activated protein kinase kinase kinase that can be activated by TGF-β, bone morphogenetic protein and other cytokines including IL-1 (1,2). In vivo activation of TAK1 requires association with TAK1 binding protein 1 (TAB1), which triggers phosphorylation of TAK1 (3,4). Another adaptor protein, TAB2, links TAK1 with TRAF6 and mediates TAK1 activation upon IL-1 stimulation (5). Once activated, TAK1 phosphorylates MAPK kinases MKK4 and MKK3/6, which activate p38 MAPK and JNK, respectively. In addition, TAK1 activates the NF-κB pathway by interacting with TRAF6 and phosphorylating the NF-κB inducing kinase (NIK) (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The actin-filament associated protein (AFAP) family consists of AFAP1, AFAP1L1, and AFAP1L2/XB130, a group of structurally similar proteins that play distinct roles in the regulation of cytoskeletal dynamics and signal transduction. Actin filament-associated protein 1-like 2 (AFAP1L2, XB130) is an adaptor protein that regulates signaling downstream of multiple kinases, including Src, Akt, and the thyroid specific kinase RET/PTC (1-3). Through these pathways, AFAP1L2/XB130 mediates transcriptional regulation, cell proliferation, motility, and microRNA expression (4,5). Research has shown that AFAP1L2/XB130 is involved in the proliferation and survival of thyroid tumor cells (6), and may have value in gastric cancer prognosis (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: BCAR3 is a member of the novel SH2-containing protein (NSP) family (1). It was identified as a gene product involved in anti-estrogen resistance in the context of breast cancer (2). Like other members of this family, BCAR3 has been shown to interact with the family member, CAS. The C terminal Cdc25 homolgy domain of BCAR3 interacts tightly with the FAT domain of p130Cas (3) and promotes the association of p130cas with Src kinase (4) to activate related signaling pathways. Overexpression of BCAR3 leads to the activation of a wide range of downstream signaling proteins including PI3K, rac, PAK1, and cyclin D1 (5-7). The main role of BCAR3 is to promote cell motility and regulate cytoskeletal remodeling and adhesion through its effect on p130cas and Src kinase (8-10). BCAR3 also has been implicated in playing an inhibitory role on TGF-β/SMAD signaling, which is associated with favorable disease outcomes (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Kinetochores are mitotic structures that form on centromeres and attach to mitotic spindle microtubules. Kinetochore attachment to microtubules regulates chromosome segregation and progression through mitosis. Unattached kinetochores signal to the spindle assembly checkpoint (SAC) machinery, arresting cells in mitosis (1).CENP-I is a centromere protein associated with the inner kinetochore, and required for progression through mitosis and the appropriate localization of other kinetochore-associated and checkpoint proteins, including CENP-C, the RZZ complex, MAD1 and MAD2 (2-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Down-regulator of transcription 1 (DR1), also known as negative cofactor 2-β (NC2-β), forms a heterodimer with DR1 associated protein 1 (DRAP1)/NC2-α and acts as a negative regulator of RNA polymerase II and III (RNAPII and III) transcription (1-5). DR1 activity is thought to be important for modulating the switch between basal transcription activity and transcription activator driven transcription (2,6,7). DR1 interaction with TATA binding protein (TBP) blocks the association of general transcription factors TFIIA and TFIIB with TBP and disrupts the formation of the RNAPII transcription initiation complex (1,8,9). RNAPIII driven transcription is also inhibited by DR1 interaction with TBP. DR1 disrupts the interaction of TBP with the TFIIB related factor (BRF)/RNAPIII B-related factor, inhibiting transcription initiation by the RNAPIII machinery (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: IGFBP7 (also known as Mac25, TAF, or IGFBP-rP1) belongs to the IGFBP superfamily, which plays an integral role in regulating insulin-like growth factor (IGF) actions in a wide variety of cell types. There are six known high-affinity IGF binding family members (IGFBP1-6), and ten low-affinity IGF binding members. These family members are structurally related, but encoded by distinct genes (1,2). IGFBP7 is a low-affinity IGF binding protein (1). The protein functions through its binding to secreted growth factors including IGF1, insulin, and activin (3,4). IGFBP7 levels have been related to cancer development and tissue injury. Loss of expression of IGFBP7 has been associated with poor survival in multiple cancer types (5,6) and with tumor chemotherapy resistance (7,8). IGFBP7 also has been identified as a cell cycle arrest biomarker for human acute kidney injury (AKI) and serves as a prognostic indicator for early stage AKI development (10,11).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: p70 S6 kinase is a mitogen activated Ser/Thr protein kinase downstream of phosphoinositide-3 kinase (PI3K) and the target of rapamycin, FRAP/mTOR. p70 S6 kinase is required for cell growth and cell cycle progression (1,2). SKAR is a recently discovered substrate of S6K1. SKAR exists in two isoforms, α and β, the latter having a 29 amino acid truncation. Phosphorylation of SKAR is mitogen-induced and sensitive to rapamycin. Reduction in SKAR protein levels results in decreased cell size, further implicating SKAR in cell growth control (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Kinesin superfamily proteins (KIFs) are molecular motors that drive directional, microtubule-dependent intracellular transport of membrane-bound organelles and other macromolecules (e.g. proteins, nucleic acids). The intracellular transport functions of KIFs are fundamentally important for a variety of cellular functions, including mitotic and meiotic division, motility/migration, hormone and neurotransmitter release, and differentiation (1-4). Disruptions to KIF-mediated intracellular transport have been linked with a variety of pathologies, ranging from tumorigenesis to defects in higher order brain function such as learning and memory (4-6).

$262
3 nmol
300 µl
SignalSilence® c-Jun siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit c-Jun expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: c-Jun is a member of the Jun family containing c-Jun, JunB, and JunD, and is a component of the transcription factor activator protein-1 (AP-1). AP-1 is composed of dimers of Fos, Jun, and ATF family members and binds to and activates transcription at TRE/AP-1 elements (reviewed in 1). Extracellular signals including growth factors, chemokines, and stress activate AP-1-dependent transcription. The transcriptional activity of c-Jun is regulated by phosphorylation at Ser63 and Ser73 through SAPK/JNK (reviewed in 2). Knock-out studies in mice have shown that c-Jun is essential for embryogenesis (3), and subsequent studies have demonstrated roles for c-Jun in various tissues and developmental processes including axon regeneration (4), liver regeneration (5), and T cell development (6). AP-1 regulated genes exert diverse biological functions including cell proliferation, differentiation, and apoptosis, as well as transformation, invasion and metastasis, depending on cell type and context (7-9). Other target genes regulate survival, as well as hypoxia and angiogenesis (8,10). Research studies have implicated c-Jun as a promising therapeutic target for cancer, vascular remodeling, acute inflammation, and rheumatoid arthritis (11,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: RCC2/TD-60 is a member of the RCC1 (regulator of chromosome condensation 1) family of guanine nucleotide exchange factors. RCC2/TD-60 is associated with the chromosome passenger complex (CPC), which also consists of aurora B kinase, borealin, INCENP (inner centromere protein) and survivin. The CPC acts at various stages of mitosis, interacts with microtubules and is required for proper chromosome segregation and cytokinesis. Regulation of aurora B kinase is key in the regulation of the CPC (reviewed in 1,2). In late mitosis, RCC2/TD-60 is required for spindle assembly and recruitment of survivin and aurora B (3). RCC2/TD-60 is also required for aurora B activation in vitro and localization of the CPC to centromeres (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Hip (HSP70-interacting protein), also known as ST13 (suppression of tumorigenicity protein 13), is one of several co-chaperones that regulate activities of the HSP70 chaperone family (1,2). The homo-oligomeric protein Hip cooperates with HSP70 in protein folding by stabilizing the ADP-bound state of HSP70. Hip directly binds to the ATPase domain of HSP70 when it is converted to the ADP-bound state by proteins of the HSP40 family (3). By collaborating with other positive co-factors such as HSP40 and Hop, or competing with negative co-factors such as Bag1, Hip may facilitate the chaperone function of HSP70 in protein folding and repair, and in controlling the activity of regulatory proteins such as steroid receptors and various regulators of proliferation or apoptosis (4-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Nectin-4/Poliovirus Receptor-Like 4 (PVRL4) is a type-I transmembrane glycoprotein that belongs to the immunoglobulin superfamily and promotes cell-cell adhesion by serving as a major component of adherens junctions (1-3). The extracellular domain of Nectin-4, which contains an Ig variable-like domain (V) and two Ig constant-like domains (C), mediates binding to the measles virus (4) and to neighboring cells through trans heterophilic interactions with Nectin-1 (5,6). Unlike other nectin family members, which are widely expressed in adult tissues, Nectin-4 expression in humans is largely restricted to the placenta (7). Research studies have demostrated that Nectin-4 is overexpressed in a variety of human solid tumors of the pancreas (8), breast (9,10), lung (11), and ovary (12). Due to its restricted expression pattern in normal human tissues, Nectin-4 may serve as a novel diagnostic and therapeutic target for a variety of human tumors.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Reptin/RuvBL2 and Pontin/RuvBL1 are closely related members of the AAA+ (ATPase associated with diverse cellular activities) superfamily of proteins, and are putatively homologous to bacterial RuvB proteins that drive branch migration of Holliday junctions (1). Reptin and Pontin function together as essential components of chromatin remodeling and modification complexes, such as INO80, TIP60, SRCAP, and Uri1, which play key roles in regulating gene transcription (1,2). In their capacity as essential transcriptional co-regulators, Reptin and Pontin have both been implicated in oncogenic transformations, including those driven by c-Myc, β-catenin, and E1A (2-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Western Blotting

Background: Tripartite motif containing protein 37 (TRIM37, also known as MUL1) is a member of the tripartite motif (TRIM) family whose members contain a RING domain, a B-box, and a coiled-coil region (together called RBCC). TRIM37 was initially described as the defining truncation mutation in mulibrey nanism (1). An E3 ubiquitin ligase, TRIM37 is responsible for the monoubiquitination of histone H2A at Lys119, and is amplified in over 40% of breast cancers (2,3). TRIM37 interacts with polycomb group proteins EZH2 and SUZ12, and contributes to histone H3K27 lysine tri-methylation and subsequent silencing of tumor suppressor genes (3). Oncogenic activity of TRIM37 has also been reported in pancreatic, hepatic, and colorectal cancers (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: The mammalian imitation SWI (ISWI) complexes are characterized by two ATPase subunits: Snf2h and Snf2l (1). Snf2h interacts with ATP-utilizing chromatin assembly and remodeling factor 1 (ACF1) to comprise the ACF chromatin-remodeling complex (1). ACF1 (BAZ1A) has distinct roles in development (2), regulation of chromatin structure (3), and DNA damage response (4,5). Different developmental stages dictate the expression of ACF1 in Drosophila, and alterations in ACF1 expression during Drosophila development leads to deviation from normal chromatin organization (2). ACF1 functions in heterochromatin formation during development and is involved in the initial establishment of diversified chromatin structures. In vivo studies demonstrate that heterochromatin protein 1 (HP1) binding to methylated lysine 9 of histone H3 is enhanced by the interaction of ACF1 with chromatin (6). Chromatin-remodeling factors are required during DNA damage in order to allow signaling molecules and damaging enzymes to access the site (4). Depletion of hACF1 increases apoptosis and vulnerability to radiation and compromises G2/M arrest activated in response to X-ray and UV exposure (4). Depletion of ACF1 also sensitizes cells to DNA double-stranded breaks (DSBs) and impairs DNA repair (5). Specifically, accumulation of Ku at DSBs sites may depend on the presence of ACF1 (5).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism, and transport of nuclear pre-mRNA transcripts (1). The A/B subfamily of hnRNP includes A1, A2/B1, A3, and A0. hnRNP A0 is phosphorylated at Ser84 by MAPKAPK-2 in response to LPS treatment in mouse macrophage cells, which might play a key role in stimulating translation of the TNF-α message (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The coat protein complex II (COPII) is composed of five cytosolic proteins and includes the Sec23/24 complex, the Sec13/31 complex, and Sar1. The COPII coat is located at the ER/Golgi interface and is involved in transport of newly synthesized proteins from the ER to the Golgi apparatus (1). COPII formation is initiated through the binding of the activated G protein, Sar1, to the Sec23/24 complex to form a pre-budding complex that directly binds target molecules (1-3). This pre-budding complex further recruits Sec13/31 to form mature COPII coat (4,5). The Sec31 subunit of COPII coat interacts with Sec13 at the ER exit and is required for both vesicle formation and ER-Golgi transport. Two isoforms of human Sec31 have been identified, Sec31A and Sec31B, which share a sequence homology of 47.3% (6-8). Sec31A is ubiquitously expressed in tissues and organs, whereas Sec31B is enriched in brain and testis (7,8). In classical Hodgkin lymphoma, a novel fusion of Jak2 with Sec31A renders Jak2 constitutively active and subject to Jak2 inhibitor effects (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Neogenin is a member of the Deleted in Colorectal Cancer (DCC) receptor family. It acts as an attractive axon guidance receptor in response to netrin, and as a repellent receptor when interacting with RGMa (1,2). Neogenin also regulates adhesion and tissue organization, such as bone formation, mammary gland morphogenesis, and skeletal myofiber development, by interacting with secreted netrins (3-5). In addition, neogenin is a key regulator of adult neurogenesis by synchronizing neuroblast migration and differentiation (6). Neogenin expression has been found to be associated with cellular phenotype in cancer. In breast cancer, neogenin expression is inversely correlated with cancer grade (7), while in gastric cancer, up regulation of neogenin was found to increase cell proliferation and motility (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Receptor for Hyaluronic acid-Mediated Motility (RHAMM, known also as CD168 or HMMR) was first identified as a putative receptor for hyaluronic acid (HA) that modulated HA-mediated cell motility (1). RHAMM/CD168 is functionally similar to the HA receptor CD44; however in contrast to CD44, RHAMM/CD168 does not contain a transmembrane domain or a signal peptide leader sequence, and so is not targeted exclusively to the cell membrane (1). RHAMM/CD168 has multiple isoforms; some are reportedly exported to the cell membrane in response to signaling by growth factors and cytokines (e.g., TGF-β) (2, 3), whereas others have been implicated in intracellular functions including mitotic spindle regulation (4). Cell surface RHAMM/CD168 is localized to membrane ruffles, consistent with proteins that regulate cell motility (1). Numerous research studies have reported that the expression of RHAMM/CD168 is positively associated with cancer cell growth, motility and/or metastasis (5-7), in addition to HA-mediated inflammation (8), suggesting the potential for therapeutic approaches that target HA-receptor mediated signaling (9,10).

$262
3 nmol
300 µl
SignalSilence® Caspase-3 siRNA allows the researcher to specifically inhibit Caspase-3 expression using RNA interference, a method in which gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce protein expression in specified cell lines.
REACTIVITY
Human

Background: Caspase-3 (CPP-32, Apoptain, Yama, SCA-1) is a critical executioner of apoptosis, as it is either partially or totally responsible for the proteolytic cleavage of many key proteins, such as the nuclear enzyme poly (ADP-ribose) polymerase (PARP) (1). Activation of caspase-3 requires proteolytic processing of its inactive zymogen into activated p17 and p12 fragments. Cleavage of caspase-3 requires the aspartic acid residue at the P1 position (2).