Microsize antibodies for $99 | Learn More >>

Product listing: Na Channel β1 Subunit (D9T5B) Rabbit mAb, UniProt ID Q07699 #14684 to NTF2 (5A3) Mouse mAb, UniProt ID P61970 #3053

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Mammalian voltage-gated sodium channels (VGSCs) are composed of a pore-forming α subunit and one or more regulatory β subunits (1). Four separate genes (SCN1B-SCN4B) encode the five mammalian β subunits β1, β1B, β2, β3, and β4. In general, β subunit proteins are type I transmembrane proteins, with the exception of secreted β1B protein (reviewed in 2). β subunits regulate α subunit gating and kinetics, which controls cell excitability (3,4). Sodium channel β subunits also function as Ig superfamily cell adhesion molecules that regulate cell adhesion and migration (5,6). Additional research reveals sequential processing of β subunit proteins by β-secretase (BACE1) and γ secretase, resulting in ectodomain shedding of β subunit and generation of an intracellular carboxy-terminal fragment (CTF). Generation of the CTF is thought to play a role in cell adhesion and migration (7,8). Multiple studies demonstrate a link between β subunit gene mutations and a number of disorders, including epilepsy, cardiac arrhythmia, multiple sclerosis, neuropsychiatric disorders, neuropathy, inflammatory pain, and cancer (9-13).

$262
3 nmol
300 µl
SignalSilence® c-Myc siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit c-Myc expression by RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Members of the Myc/Max/Mad network function as transcriptional regulators with roles in various aspects of cell behavior including proliferation, differentiation and apoptosis (1). These proteins share a common basic-helix-loop-helix leucine zipper (bHLH-ZIP) motif required for dimerization and DNA-binding. Max was originally discovered based on its ability to associate with c-Myc and found to be required for the ability of Myc to bind DNA and activate transcription (2). Subsequently, Max has been viewed as a central component of the transcriptional network, forming homodimers as well as heterodimers with other members of the Myc and Mad families (1). The association between Max and either Myc or Mad can have opposing effects on transcriptional regulation and cell behavior (1). The Mad family consists of four related proteins; Mad1, Mad2 (Mxi1), Mad3 and Mad4, and the more distantly related members of the bHLH-ZIP family, Mnt and Mga. Like Myc, the Mad proteins are tightly regulated with short half-lives. In general, Mad family members interfere with Myc-mediated processes such as proliferation, transformation and prevention of apoptosis by inhibiting transcription (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: THEM2 is a homotetrameric fatty acyl–CoA thioesterase (1). THEM2 and PC-TP (phosphatidylcholine transfer protein), both enriched in liver, interact to form a complex (1). Cell membrane-bound phosphatidylcholines bind to PC-TP in the complex (1). The complex in turn inhibits IRS-2 and mTORC1, which leads to the suppression of insulin signaling (1). THEM2 has also been shown to regulate adaptive thermogenesis in mice (2).

$262
3 nmol
300 µl
SignalSilence® FoxO1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit FoxO1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: The Forkhead family of transcription factors is involved in tumorigenesis of rhabdomyosarcoma and acute leukemias (1-3). Within the family, three members (FoxO1, FoxO4, and FoxO3a) have sequence similarity to the nematode orthologue DAF-16, which mediates signaling via a pathway involving IGFR1, PI3K, and Akt (4-6). Active forkhead members act as tumor suppressors by promoting cell cycle arrest and apoptosis. Increased expression of any FoxO member results in the activation of the cell cycle inhibitor p27 Kip1. Forkhead transcription factors also play a part in TGF-β-mediated upregulation of p21 Cip1, a process negatively regulated through PI3K (7). Increased proliferation results when forkhead transcription factors are inactivated through phosphorylation by Akt at Thr24, Ser256, and Ser319, which results in nuclear export and inhibition of transcription factor activity (8). Forkhead transcription factors can also be inhibited by the deacetylase sirtuin (SirT1) (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The evolutionarily conserved CCR4-NOT (CNOT) complex regulates mRNA metabolism in eukaryotic cells (1). This regulation occurs at different levels of mRNA synthesis and degradation, including transcription initiation, elongation, deadenylation, and degradation (1). Multiple components, including CNOT1, CNOT2, CNOT3, CNOT4, CNOT6, CNOT6L, CNOT7, CNOT8, CNOT9, and CNOT10 have been identified in this complex (2). In addition, subunit composition of this complex has been shown to vary among different tissues (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: IQGAPs are scaffolding proteins involved in mediating cytoskeletal function. They contain multiple protein interaction domains and bind to a growing number of molecules including actin, myosin light chain, calmodulin, E-cadherin, and β-catenin (reviewed in 1). Through their GAP-related domains, they bind the small GTPases Rac1 and cdc42. IQGAPs lack GAP activity, however, and regulate small GTPases by stabilizing their GTP-bound (active) forms (2,3). Research studies have shown that the function and distribution of the IQGAP proteins widely vary. IQGAP1 is ubiquitously expressed and has been found to interact with APC (4) and the CLIP170 complex (5) in response to small GTPases, promoting cell polarization and migration. Additional research studies have suggested that IQGAP1 could play a part in the invasiveness of some cancers (6-8). IQGAP2, which is about 60% identical to IQGAP1, is expressed primarily in liver (3), but lower levels have been detected in the prostate, kidney, thyroid, stomach, and testis (9,10). Research studies have shown that IQGAP2 displays tumor suppressor properties (11). Less is known about the function of IQGAP3, but this protein is present in the lung, brain, small intestine, and testis (9) and is only expressed in proliferating cells (12), suggesting a role in cell growth and division.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Ectonucleotide pyrophosphatase/phosphodiesterase 3 (ENPP3/CD203c/PD-Ιbeta) is a type-II transmembrane glycoprotein that contains a large extracellular domain, an α-helical transmembrane segment, and a short cytoplasmic domain containing the N-terminus. ENPP3 has been shown to be overexpressed in colon carcinoma and is thought to play a role in tumor initiation and tumor cell invasiveness (1-3). Within the hematopoietic cell compartment, ENPP3 is a cell surface marker of basophil and mast cell lineages (4,5). Indeed, ENPP3 is overexpressed on transformed mast cells in patients with systemic mastocytosis (6). Recently, ENPP3 has been identified as being highly overexpressed in renal cell carcinoma (RCC) and may have potential as a novel therapeutic target for this disease (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Aldehyde dehydrogenase 2 (ALDH2) is a member of the aldehyde dehydrogenase superfamily (1). The enzymes in this family catalyze the oxidation of a variety of aldehydes, leading to their detoxification (1, 2). ALDH2 activation correlates with decreased ischemic heart injury, suggesting an essential role of ALDH2 in cardiac protection from ischemic injury (3). In addition, ALDH2 is the primary enzyme for aldehyde oxidation in hematopoietic stem cells (4). ALDH2 is required for protecting these cells from DNA damage caused by acetaldehyde and has a critical function to counteract genotoxicity (4, 5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: ANP32A is the founding member of the acidic nuclear phosphoprotein 32 kDa (ANP32) family, which share two highly conserved regions: the N-terminal leucine-rich repeats (LRRs) sequence and the C-terminal acidic tail (1). ANP32A was originally purified as a potent, heat-stable protein phosphatase 2A (PP2A)-specific inhibitor, and subsequent studies suggested that it binds directly to the catalytic subunit of PP2A (2,3). ANP32A is a key component of acetyltransferase inhibitor complex that regulates chromatin remodeling and transcription (4,5). ANP32A also forms a multiunit complex with HuR that regulates RNA transport and stability (6). In addition, ANP32A is reported to play roles in apoptosis, neural differentiation and pathogenesis (7-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: RanBP3 was originally identified as RanGTP binding protein located in the nucleus and involved in the nuclear exporting process (1). It functions as a cofactor for CRM1 nuclear export by binding to CRM1, stabilizing the RanGTP-CRM1-cargo interaction and promoting complex association with nuclear pore proteins (2,3). In the absence of Ran-bound GTP, RanBP3 prevents binding of CRM1 complex to the nuclear pore complex. In addition to CRM1, RanBP3 also has been shown to bind to RanGEF-RCC1 and increase the guanine nucleotide exchange activity of RCC1 for RanGTP-CRM1-Cargo (1,4). In some cases, as with β-catenin and Smad2/3, RanBP3 binding may mediate the target protein nuclear export in a Ran-dependent, but CRM1-independent manner (5,6). RanBP3 is phosphorylated at Ser58 through the PI3K/Akt or ERK/RSK pathway. This phosphorylation is important for RanBP3 function in nuclear export, likely due to stimulation of RCC1 activity (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The Reelin signaling pathway plays a critical role in neuronal development. Reelin is a secreted glycoprotein that binds to the lipoprotein receptors VLDLR and ApoER2 or alpha3beta1 integrin on the surface of neurons (1,2). Activation of these receptors induces tyrosine phosphorylation of Disabled 1 (Dab1), an intracellular adaptor. It is generally believed that tyrosine phosphorylation of Dab1 by Src family tyrosine kinases is the most critical downstream event in Reelin signaling. The phosphotyrosine-binding (PTB) domain within its amino terminus enables Dab1 to recognize and bind to a conserved sequence motif within the cytoplasmic tail of the receptors. In addition, the PTB contains a Pleckstrin Homology-like subdomain that binds to phosphoinositides. The phosphoinositide-binding region within the Dab1 PTB domain is required for membrane localization and basal tyrosine phosphorylation of Dab1 independent of VLDLR and ApoER2 (3). It has been demonstrated that Src, CrkII, CrkL and Dock1 associate with tyrosine-phosphorylated Dab. The CrkII-Dab1 interaction requires tyrosine phosphorylation of Dab1 at residues 220 or 232 (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: DCBLD2 (discoidin, CUB and LCCL domain-containing 2; also known as ESDN and CLCP1) is a type I transmembrane protein that is structurally similar to neuropilin family proteins and contains the longest known amino-terminal secretory signal sequence among eukaryotic proteins (1). Highly expressed in nerve bundles, vascular smooth muscle cells and upregulated following vascular injury, DCBLD2 may be involved in a wide range of functions in the nervous and vascular systems (1,2). Studies have found DCBLD2 to be upregulated in several types of lung cancer with an especially high frequency in metastatic lesions and lymph node metastasis, implicating a role in the process of tumor progression and metastatic capability (3). DCBLD2 has also been identified as part of a complex EGF phosphotyrosine signaling network, serving as a novel tyrosine phosphorylation target of EGF signaling in human cancer cells (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Ena/VASP-like (EVL) protein is a member of the Ena/VASP family and is involved in actin-associated cytoskeleton remodeling and cell polarity activities including axon guidance and lamellipodia formation in migrating cells (1,2,3). The EVL protein sequence contains an N-terminal EVH1 domain, a Pro-rich SH3 binding domain, and a C-terminal EVH2 domain. EVL domain interactions with G- and F-actin mediates actin nucleation and polymerization (4). Research studies have shown that EVL also regulates DNA repair by direct interaction with RAD51 (5). EVL may function in the DSB repair pathway through the EVH2 domain, which possesses DNA-binding and RAD51 binding activity, thereby coordinating homologous DNA recombination (6,7). Research studies have shown EVL expression is up-regulated in human breast cancer associated with clinical stages and may be implicated in invasion and/or metastasis of human breast cancer (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Western Blotting

Background: Trophoblast glycoprotein (TPBG/5T4) is a type-I transmembrane glycoprotein that is normally expressed by trophoblast cells of the placenta with a very limited expression pattern in normal adult tissues (1,2). The extracellular domain of TPBG is extensively glycosylated and contains multiple leucine-rich repeats while its cytoplasmic domain consists of PDZ domain-binding motif, which is important for linking TPBG to intracellular signaling networks involved in the regulation of cell motility and adhesion (3,4). Research studies have shown that cell surface expression of TPBG plays a critical role in modulating signaling cascades that drive cell adhesion, morphology, and motility processes that are fundamental for normal progression of embryogensis (5-7).Research studies have demonstrated that TPBG is aberrantly over expressed in numerous types of solid tumors (8) and functions to promote enhanced tumor cell motility and metastasis (9,10). In some tumors, such as NSCLC and HNSCC, TPBG has been identified as novel marker of tumor-initiating cells (11,12). The observed differential expression of TPBG by normal tissue versus tumor tissue has been exploited by multiple immunotherapeutic agents that are currently being evaluated for targeting of multiple types of solid tumors (13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Na-K-2Cl cotransporter (NKCC2) is a sodium-potassium-chloride cotransporter. It is mainly expressed on the luminal membrane of renal epithelial cells of the thick ascending limb of Henle's loop (TALH) and mediates the majority of NaCl resorption and concentration of urine (1,2). NKCC2 is the target for several diuretic drugs, such as bumetanide, and is involved in the pathogenesis of hypertension (3,4). Mutations in the NKCC2-encoding gene, SLC12A1, causes Bartter’s syndrome, which is featured by impaired salt reabsorption in the TALH, hypokalemic metabolic alkalosis, and hypercalciuria (5,6). Recently, NKCC2 was reported to be expressed in the brain hypothalamo-neurohypophyseal system (HNS) and upregulated upon osmotic stress (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine

Application Methods: Western Blotting

Background: Bovine serum albumin (BSA) is the most abundant protein in plasma. Albumin is predominantly synthesized in the liver and is a major transportation component for many endogenous and exogenous compounds, including fatty acids, steroid hormones, metabolites and drugs. It is also responsible for maintaining colloid osmotic pressure and may affect microvascular integrity (1).

$262
3 nmol
300 µl
SignalSilence® c-Jun siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit c-Jun expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: c-Jun is a member of the Jun family containing c-Jun, JunB, and JunD, and is a component of the transcription factor activator protein-1 (AP-1). AP-1 is composed of dimers of Fos, Jun, and ATF family members and binds to and activates transcription at TRE/AP-1 elements (reviewed in 1). Extracellular signals including growth factors, chemokines, and stress activate AP-1-dependent transcription. The transcriptional activity of c-Jun is regulated by phosphorylation at Ser63 and Ser73 through SAPK/JNK (reviewed in 2). Knock-out studies in mice have shown that c-Jun is essential for embryogenesis (3), and subsequent studies have demonstrated roles for c-Jun in various tissues and developmental processes including axon regeneration (4), liver regeneration (5), and T cell development (6). AP-1 regulated genes exert diverse biological functions including cell proliferation, differentiation, and apoptosis, as well as transformation, invasion and metastasis, depending on cell type and context (7-9). Other target genes regulate survival, as well as hypoxia and angiogenesis (8,10). Research studies have implicated c-Jun as a promising therapeutic target for cancer, vascular remodeling, acute inflammation, and rheumatoid arthritis (11,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Fragile X syndrome is a genetic disorder characterized by a spectrum of physical and behavioral features and is a frequent form of inherited mental retardation (1). X-linked FMRP (FMR-1) and its two autosomal homologs, FXR1 and FXR2, are polyribosome-associated RNA-binding proteins that are involved in the pathogenesis of fragile X syndrome (1-3). Each of the fragile X proteins can self-associate, as well as form heteromers with the other two related proteins (3). FMRP can act as a translation regulator and is a component of RNAi effector complexes (RISC), suggesting a role in gene silencing (4). The Drosophila homolog of FMRP (dFMRP) associates with Argonaute 2 (Ago2) and Dicer and can coimmunoprecipitate with miRNA and siRNA (5). These results suggest that fragile X syndrome is related to abnormal translation caused by defects in RNAi-related pathways. In addition, FMRP, FXR1, and FXR2 are components of stress granules (SG) and have been implicated in the translational regulation of mRNAs (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Histone macroH2A1 and macroH2A2 comprise a family of variant histone H2A proteins. MacroH2A1 exists as two distinct isoforms due to alternative splicing of a single gene; macroH2A1.1 levels accumulate throughout differentiation and development while macroH2A1.2 shows a constant level of expression (1). MacroH2A1 and macroH2A2 are encoded by completely distinct genes located on separate chromosomes (2,3). Both macroH2A1 and macroH2A2 proteins contain an amino-terminal histone-like region with 64% sequence identity to canonical histone H2A, in addition to a carboxy-terminal “macro” domain (1-3). MacroH2A1 and macroH2A2 are enriched in facultative heterochromatin, including inactivated X chromosomes in mammalian females and senescence-associated heterochromatin foci (2-5). Both act to repress gene transcription by inhibiting the binding of transcription factors to chromatin, the acetylation of histones by p300, and the chromatin-remodeling activities of SWI/SNF and ACF (6,7). The macro domain of macroH2A1.1 binds to ADP-ribose and functions to recruit macroH2A1.1 to activated PARP at sites of DNA damage, where it mediates chromatin rearrangements to locally regulate the DNA damage response (8). MacroH2A1.2 and macroH2A2 do not bind poly-ADP-ribose and are not recruited to sites of activated PARP (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The MCF2/Dbl proto-oncogene product is the founding member of the Dbl family of Rho guanine nucleotide exchange factors (GEFs) that are characterized by their Dbl homology (DH) domain (1). GEFs stimulate the formation of the active, GTP-bound form of small GTPases such as Rho, Rac and Cdc42, signaling to various downstream molecules and regulating diverse cell functions. While the overexpressed, full-length Dbl gene has transforming activity (2), mutations resulting in truncated Dbl cause the protein to become highly oncogenic. This truncated form of Dbl, which lacks the amino-terminal 497 amino acids, has constitutive GEF activity (3) and is more stable than the full-length variant (4), allowing for increased signaling to downstream effector molecules.Dbl interacts with ezrin, a member of the ezrin/radixin/moesin (ERM) family of proteins that links the plasma membrane to the actin cytoskeleton. Dbl interacts with ezrin in lipid microdomains, which leads to Cdc42 activation and the regulation of processes such as filopodia formation and cell polarity (5,6). Dbl localization and biological activities are regulated in part by phosphatidylinositol 3-kinase (PI3K) (7). Dbl is also involved in cell survival and inhibits apoptosis through induction of Akt phosphorylation at Thr308 (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Mammalian cells synthesize serine de novo by diverting a portion of the glycolytic intermediate 3-phosphoglycerate into the phosphorylated pathway of serine synthesis. This shift supports anabolism by providing precursors for the biosynthesis of proteins, nucleotides, creatine, porphyrins, phospholipids, and glutathione. Phosphoglycerate dehydrogenase (PHGDH) catalyzes the first step in the serine biosynthesis pathway by converting 3-phosphoglycerate into phosphohydroxy pyruvate (1).Research studies demonstrate that an increase in serine biosynthesis supports growth and proliferation of cancer cells (2-4), which is supported by amplification and overexpression of PHGDH in a subset of melanoma and breast cancers (5,6). Suppression of PHGDH expression in cell lines with elevated PHGDH levels causes a strong decrease in cell proliferation and inhibits tumor growth in vivo (5). Additional evidence suggests that PHGDH interacts with and stabilizes FoxM1, which promotes the proliferation, invasion, and tumorigenicity of glioma cells (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Protein ubiquitination requires the concerted action of the E1, E2, and E3 ubiquitin-conjugating enzymes. Ubiquitin is first activated through ATP-dependent formation of a thiol ester with ubiquitin-activating enzyme E1. The activated ubiquitin is then transferred to a thiol group of ubiquitin-carrier enzyme E2. The final step is the transfer of ubiquitin from E2 to an ε-amino group of the target protein lysine residue, which is mediated by ubiquitin-ligase enzyme E3 (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Intercellular cell adhesion molecule-2 (CD102/ICAM-2) is a cell surface glycoprotein that belongs to the immunoglobulin superfamily (IgSF) of adhesion molecules. Like CD54/ICAM-1, CD102/ICAM-2 is a ligand that binds the leukocyte adhesion molecule LFA-1 (leukocyte function-associated antigen-1), which mediates intercellular interactions between immune cells and other cell types (1).Expression of CD102/ICAM-2 has been shown to affect angiogenesis (2), cellular radioresistance (3) and anti-tumor immune response (4). Along with CD54/ICAM-1, CD102/ICAM-2 mediates T cell crawling and diapedesis across the blood-brain barrier (5), as well as T cell migration across the bronchial epithelium (6). CD102/ICAM-2 interaction with the actin cytoskeleton through α-actinin has been shown to limit the mobility on neuroblastoma cells (7), and this effect is dependent on glycosylation of CD102/ICAM-2 (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: DHX29 is an ATP-dependent RNA helicase that belongs to the DEAD-box helicase family (DEAH subfamily). DHX29 contains one central helicase and one helicase at the carboxy-terminal domain (1). Its function has not been fully established but DHX29 was recently shown to facilitate translation initiation on mRNAs with structured 5' untranslated regions (2). DHX29 binds 40S subunits and hydrolyzes ATP, GTP, UTP, and CTP. Hydrolysis of nucleotide triphosphates by DHX29 is strongly stimulated by 43S complexes and is required for DHX29 activity in promoting 48S complex formation (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Insulin binds to and activates its receptor and initiates a signaling cascade that eventually induces the translocation of the Glut4 glucose transporter from its intracellular locations to the plasma membrane. Initiating this pathway facilitates glucose uptake in fat and skeletal muscle cells (1). Synip and Syntaxin 4 are two proteins thought to be involved in the recruitment of Glut4-containing vesicles to plasma membrane (2,3). Synip associates with Syntaxin 4 when insulin is absent. Insulin signaling triggers the dissociation of the two proteins and allows Syntaxin 4 to complex with VAMP2, which is essential for Glut4 translocation to plasma membrane (2-4). Overexpression of a dominant-negative form of Synip prevents Glut4 from translocating to plasma membrane in response to insulin stimulation (3). Synip together with Syntaxin 4, therefore, regulates Glut 4 transport to plasma membrane.

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: PANK2, pantothenate kinase 2, catalyzes the first step in CoA biosynthesis (1,2). Human PANK2 is located in the mitochondria, and research studies have shown some mutations in human PANK2 are linked to neurodegeneration (2). Alternatively, mouse PANK2 localizes in the cytosol, and defective PANK2 in mice leads to retinal degeneration (1,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: LIM homeobox transcription factor 1 β (Lmx1B) is a member of an evolutionarily conserved family of transcription factors that regulate developmental pattern formation in both vertebrates and invertebrates (1). Numerous developmental studies show that Lmx1B is required for vertebrate dorsoventral limb patterning, as well as normal glomerular basement membrane development and typical differentiation of central serotonergic neurons (2,3).Mutations in the corresponding Lmx1B gene have been associated with nail-patella syndrome (NPS), an autosomal dominant disorder characterized by dysplasia of fingernails, skeletal anomalies and, frequently, renal disease (2). Abnormal developmental disorders such as developmental glaucoma and idiopathic Parkinson’s disease have also been associated with Lmx1B function (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Members of the Toll-like receptor (TLR) family, named for the closely related Toll receptor in Drosophila, play a pivotal role in innate immune responses (1-4). TLRs recognize conserved motifs found in various pathogens and mediate defense responses (5-7). Triggering of the TLR pathway leads to the activation of NF-κB and subsequent regulation of immune and inflammatory genes (4). The TLRs and members of the IL-1 receptor family share a conserved stretch of approximately 200 amino acids known as the Toll/Interleukin-1 receptor (TIR) domain (1). Upon activation, TLRs associate with a number of cytoplasmic adaptor proteins containing TIR domains, including myeloid differentiation factor 88 (MyD88), MyD88-adaptor-like/TIR-associated protein (MAL/TIRAP), Toll-receptor-associated activator of interferon (TRIF), and Toll-receptor-associated molecule (TRAM) (8-10). This association leads to the recruitment and activation of IRAK1 and IRAK4, which form a complex with TRAF6 to activate TAK1 and IKK (8,11-14). Activation of IKK leads to the degradation of IκB, which normally maintains NF-κB in an inactive state by sequestering it in the cytoplasm.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The small GTPase Ran resides on both the cytosolic and nucleosolic sides of the nuclear pore complex (NPC) and regulates the import and export of various proteins to and from the nucleus. Like other small GTPases, Ran exists in either a GTP-bound or GDP-bound state. RanGTP that resides in the nucleus and promotes nuclear export, while cytosolic RanGDP promotes import. The gradient of RanGTP across the nuclear membrane allows for appropriate movement of cargo proteins across the NPC as well as maintenance of the mitotic spindle (1-3).Nuclear transport factor 2 (NTF2) regulates the subcellular distribution and function of Ran (4-5). The NTF2 homodimer facilitates the diffusion of RanGDP through NPCs via transient interactions with phenylalanine-glycine (FG) repeat domains on NPC proteins. NTF2 stabilizes the GDP-bound form of Ran until it is induced to dissociate by a nuclear factor in an ATP-dependent manor, thus allowing the guanine nucleotide exchange factor (GEF) RCC1 to mediate exchange of GDP for GTP on Ran (6-7).