Interested in promotions? | Click here >>

Product listing: PRSS15/LONP1 (D7L8M) Rabbit mAb, UniProt ID P36776 #56266 to SignalSilence® NF-κB p65 siRNA II, UniProt ID Q04206 #6534

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: PRSS15/LONP1 is an ATP-dependent serine protease that selectively degrades misfolded, misassembled, or damaged proteins in mitochondrial matrix. PRSS15/LONP1 is induced by hypoxic, proteotoxic, and endoplasmic reticulum (ER) stress to support cell survival (1). It has been reported that PRSS15/LONP1 inducibility is decreased during aging and chronic stress (2-4). PRSS15/LONP1 is found to be substantially elevated in lymphoma cells compared to resting or activated B cells, and knock-down or inhibition of PRSS15/LONP1 induces apoptosis in lymphoma cells (5). Mutation in PRSS15/LONP1 is associated with CODAS syndrome, a multi-system developmental disorder characterized by cerebral, ocular, dental, auricular, and skeletal anomalies (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The modulation of chromatin structure is an essential component in the regulation of transcriptional activation and repression. Modifications can be made by at least two evolutionarily conserved strategies, through the disruption of histone-DNA contacts by ATP-dependent chromatin remodelers, or by histone tail modifications including methylation and acetylation. One of the four classes of ATP-dependent histone remodelers is the SWI/SNF complex, the central catalytic subunit of which is Brg1 or the highly related protein hBRM (1). This SWI/SNF complex contains varying subunits but its association with either Brg1 or hBRM remains constant (1). SWI/SNF complexes have been shown to regulate gene activation, cell growth, the cell cycle and differentiation (1). Brg1/hBRM have been shown to regulate transcription through enhancing transcriptional activation of glucocorticoid receptors (2). Although usually associated with transcriptional activation, Brg1/hBRM have also been found in complexes associated with transcriptional repression including with HDACs, Rb and Tif1β (3-5). Brg1/hBRM plays a vital role in the regulation of gene transcription during early mammalian embryogenesis. In addition, Brg1/hBRM also play a role as a tumor suppressors and Brg1 is mutated in several tumor cell lines (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Ancient ubiquitous protein 1 (AUP1) is a component of the ER-associated protein degradation (ERAD) machinery responsible for the ubiquitin-mediated degradation of misfolded proteins (1). AUP1 protein contains four conserved domains, with a long, amino-terminal stretch of hydrophobic amino acids followed by an acyltransferase domain (2). Amino-terminal protein sequences direct localization of AUP1 to both the ER and to cytosolic lipid droplets (3). The AUP1 CUE domain binds ubiquitin (4), while the G2BR domain allows for association between AUP1 and E2 conjugating enzyme UBE2G2 (5,6). The presence of these binding domains suggests a central role for AUP1 in the ubiquitination-mediated protein degradation (2). Research studies indicate that AUP1 recruits UBE2G2 to cytosolic lipid droplets, ER-derived organelles that are sites for storage and hydrolysis of neutral lipids. Inhibition of AUP1 protein function results in decreased ubiquitin-mediated degradation of several proteins, including the cholesterol biosynthetic enzyme HMG-CoA-reductase and the cholesterol synthesis regulator INSIG1 (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: T cell differentiation antigen CD6 is a cell adhesion molecule expressed on immature thymocytes and mature T cells, and has also been detected on a subset of B cells and NK cells within the immune system (1-4). CD6 mediates cell-cell interactions through it’s binding partner CD166/ALCAM (2), and contributes to the formation and maturation of the immunological synapse (3,4). CD6 functions as a co-stimulatory receptor, promoting T cell activation and proliferation through the TCR/CD3 complex signaling cascade (3-6). Studies have shown CD6 can be glycosylated (7), hyperphosphorylated on serine and threonine residues (8), and phosphorylated on tyrosine residues (6,9), each of which can differentially effect the function and signaling of this molecule. CD6 also functions as a calcium-dependent pattern receptor that binds and aggregates Gram-positive and Gram-negative bacteria. In response to lipopolysaccharide, CD6 mediates activation of the inflammatory response and secretion of pro-inflammatory cytokines (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rab6 is a member of the Ras superfamily of small Rab GTPases implicated in endocytosis (1). The three distinct members of the Rab6 subfamily (Rab6A, Rab6A', and Rab6B) are structurally similar but likely exhibit non-overlapping functions (2,3). Rab6 localized to the Golgi (4) regulates retrograde transport of membrane-bound target proteins from the Golgi apparatus to the endoplasmic reticulum (5-7) or from the Golgi to the endosome during exocytotic transport (8). Rab6 interacts with microtubule motor proteins such as rabkinesin-6 (KIF20A) and dynein/dynactin complexes; Rab6-mediated transport requires a functionally intact microtubule system (9,10). Rab6 also regulates cytokinesis and cell cycle check point through interactions with Rab6 effector proteins, including the dynein/dynactin protein DCTN1 and the GTPase activating protein RABGAP1 (11,12).

$262
3 nmol
300 µl
SignalSilence® Cyclin D1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit cyclin D1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Activity of the cyclin-dependent kinases CDK4 and CDK6 is regulated by T-loop phosphorylation, by the abundance of their cyclin partners (the D-type cyclins), and by association with CDK inhibitors of the Cip/Kip or INK family of proteins (1). The inactive ternary complex of cyclin D/CDK4 and p27 Kip1 requires extracellular mitogenic stimuli for the release and degradation of p27 concomitant with a rise in cyclin D levels to affect progression through the restriction point and Rb-dependent entry into S-phase (2). The active complex of cyclin D/CDK4 targets the retinoblastoma protein for phosphorylation, allowing the release of E2F transcription factors that activate G1/S-phase gene expression (3). Levels of cyclin D protein drop upon withdrawal of growth factors through downregulation of protein expression and phosphorylation-dependent degradation (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Iron-sulfur (Fe-S) clusters (ISC) are cofactors for many proteins that display a wide range of biological functions, such as DNA maintenance, transcription, translation, cellular metabolism, electron transport, and oxidative phosphorylation (1). While structurally simple, the synthesis and insertion of ISC into Fe-S proteins are complex processes that involve many different proteins. The cytosolic iron-sulfur assembly component 1 (CIAO1) protein is a key component of the cytosolic ISC assembly machinery that incorporates ISC into cytoplasmic and nuclear Fe-S proteins in eukaryotic cells (1,2). CIAO1, along with MMS19, XPD, FAM96B, and ANT2, comprise a complex that localizes to the mitotic spindle during mitosis, which suggests a role in chromosome segregation (3-6). The CIAO1 protein interacts with Wilms' tumor suppressor protein (WT1) and may affect its transactivation activity (7).

$262
3 nmol
300 µl
SignalSilence® β-Catenin siRNA I (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit β-catenin expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Mouse

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: OCRL1 is an inositol 5-phosphatase that selectively dephosphorylates the 5 position of the inositol ring. Its substrates include phosphatidylinositol 4,5-bisphosphate, inositol 1,4,5-trisphosphate, and inositol 1,3,4,5-tetrakisphosphate (1). Research studies indicate that mutations in OCRL1 are linked to Oculocerebrorenal syndrome or Lowe syndrome, an X-linked disorder distinguished by mental retardation and congenital cataracts, as well as Dent's disease (2,3). OCRL1 interacts with several endocytic proteins, including clathrin, AP-2, and RabGTPases (4-7). OCRL1 is localized to the Golgi complex, endosomes, and late stage clathrin-coated pits (6,8). OCRL1 controls early endosome function (8), regulating membrane traffic from endosomes to the Golgi. It is also involved in cytokinesis (9) and cilia assembly (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Double stranded DNA breaks (DSBs) are the most toxic of DNA lesions. They occur in response to genotoxic stress, and they are also an obligate intermediate in the V(D)J recombination events in the immune system. In mammalian cells, the most prominent mechanism by which cells deal with DSBs is known as NHEJ (non-homologous end-joining), and involves a core group of proteins that includes Ku, DNA-PK, XRCC4, and XLF (1).PAXX, (PAralog of XRCC4 and XLF, also known as C9orf142 or XLS), is a more recently identified component of the NHEJ machinery whose crystal structure resembles that of XRCC4 (2). PAXX directly interacts with Ku, and promotes accumulation of Ku at DSBs (2,3). Depletion of PAXX impairs cellular DSB repair (2-4,5). Paxx -/- mice develop normally with mild radiosensitivity, but a Paxx/Xlf double knockout is embryonic lethal in mice, indicating synthetic lethality between Paxx and Xlf (6). Paxx/Xlf double knockout have increased apopotosis in post-mitotic motor neurons, as well as impaired development of the adaptive immune system (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: DNA methyltransferase 1 (DNMT1)-associated protein 1 (DMAP1) is a nuclear protein that functions in transcriptional repression and DNA repair. DMAP1 was first identified as an activator of DNMT1 methyltransferase activity (1). Both DMAP1 and DNMT1 are targeted to replication foci during S phase and function to transfer proper methylation patterns to newly synthesized DNA during replication (1). In late S phase, DMAP1-DNMT1 co-operate with a p33ING1-Sin3-HDAC2 complex to maintain pericentric heterochromatin by deacetylating histones, methylating histone H3 at Lys9, and methylating DNA (1,2). The DMAP1 protein is also part of the TIP60-p400 complex, a histone acetyltransferases (HAT) and chromatin-remodeling complex that functions in DNA repair (3,4). Upon DNA damage, the TIP60-p400 complex acetylates histone H4 at Lys16 to induce chromatin relaxation and activation of the ATM kinase. DMAP1 is required for DNA-damage induced TIP60-p400-mediated histone acetylation, and deletion of DMAP1 impairs AMT function (5). DMAP1-DNMT1 may also methylate DNA at sites of DNA damage during homologous recombination, which results in gene silencing (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$262
3 nmol
300 µl
SignalSilence® Bad siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit Bad expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Bad is a proapoptotic member of the Bcl-2 family that promotes cell death by displacing Bax from binding to Bcl-2 and Bcl-xL (1,2). Survival factors, such as IL-3, inhibit the apoptotic activity of Bad by activating intracellular signaling pathways that result in the phosphorylation of Bad at Ser112 and Ser136 (2). Phosphorylation at these sites promotes binding of Bad to 14-3-3 proteins to prevent an association between Bad with Bcl-2 and Bcl-xL (2). Akt phosphorylates Bad at Ser136 to promote cell survival (3,4). Bad is phosphorylated at Ser112 both in vivo and in vitro by p90RSK (5,6) and mitochondria-anchored PKA (7). Phosphorylation at Ser155 in the BH3 domain by PKA plays a critical role in blocking the dimerization of Bad and Bcl-xL (8-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: FNIP1 and FNIP2 were identified as proteins interacting with tumor suppressor folliculin (FLCN) (1-3). FNIP1 and FNIP2 directly associate with AMPK, which indicates that they play roles in the energy and nutrient sensing pathways (1, 2). Further studies show that the FLCN/FNIP2 complex functions as a GTPase-activating protein for Rag GTPase C and Rag GTPase D (4). FLCN/FNIP2 complex thus promotes the binding of mTORC1 to Rag heterodimers, leading to the mTORC1 activation (4). In addition, along with FLCN, both FNIP1 and FNIP2 contribute to kidney tumor suppression (5).

$263
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to PE and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Msh homeobox 1 (Msx1) is a Muscle Segment Homeobox (Msh) gene family member that acts as a transcriptional repressor during embryonic development, playing an important role in limb pattern formation, craniofacial development, and tooth development (1-3). Msx1 is expressed in the mesenchyme of the developing nail bed (2) and in fetal hair follicles, epidermis and fibroblasts; reduced expression is seen in adult epithelial-derived tissues (4). Msx1 acts in concert with the Wnt1 network to establish the midbrain dopaminergic progenator domain, a region that gives rise to neurons that are critical for normal brain function and are the cells affected in Parkinson disease (5). Mutation in the corresponding Msx1 gene correlates with abnormal tooth development in patients diagnosed with Wolf-Hirschhorn syndrome (6). Other genetic changes in the Msx1 gene result in Witkop Syndrome ("tooth and nail syndrome") and cases of abnormal tooth development associated with non-syndromic orofacial clefting (2,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The COP9 Signalosome (CSN) is a ubiquitously expressed multiprotein complex that is involved in a vast array of cellular and developmental processes, which is thought to be attributed to its control over the ubiquitin-proteasome pathway. Typically, the CSN is composed of eight highly conserved subunits (CSN1-CSN8), each of which is homologous to one of the eight subunits that form the lid of the 26S proteasome particle, suggesting that these complexes have a common evolutionary ancestor (1). CSN was first identified in Arabidopsis thaliana mutants with a light-grown seedling phenotype when grown in the dark (2-4). The subsequent cloning of the constitutive morphogenesis 9 (cop9) mutant from Arabidopsis thaliana was soon followed by the biochemical purification of the COP9-containing multiprotein complex (4). It is now widely accepted that the CSN directly interacts with cullin-RING ligase (CRL) families of ubiquitin E3 complexes, and that CSN is required for their proper function (5). In addition, CSN may also regulate protein homeostasis through its association with protein kinases and deubiquitinating enzymes. Collectively, these activities position the CSN as a pivotal regulator of the DNA-damage response, cell-cycle control, and gene expression (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: TNFSF15 (TL1A), a member of the TNF superfamily of proteins, is a splice variant of the TL1/VEGI gene (1). Endothelial cells, monocytes, macrophages, and dendritic cells express TL1A, which is upregulated by proinflammatory cytokines, microorganisms, and AMPK activation (1-4). TL1A activates the NF-κB and JNK pathways through its receptor, DR3 (1,5). TL1A may function as a costimulatory signal for T cell activation, specifically regulating Th17 cell development and proliferation (1,2,6). Mouse models suggest a role for TL1A as a driver for the inflammation and pathogenesis associated with inflammatory bowel disease (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Telomeres, the linear ends of chromosomes, are organized into T-loops to prevent them from being recognized by the cell as DNA double stranded breaks (DSBs) (1). The telomeric repeat binding factor proteins TRF1 and TRF2 bind to double-stranded telomeres to allow formation of T-loops (2). A large number of proteins involved in the DNA damage response are found physically associated with TRF2 within telomeres (3). Interestingly, TRF2 can transiently localize to DNA damage-induced DSBs, but overexpression of TRF2 prevents ATM-dependent signaling (4). Phosphorylation of TRF2 at Ser323 has been reported in vivo, but no upstream kinase or role has been established for this phosphorylation site (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Retinoic Acid-Induced Gene 1 (RAIG1), also called RAI3 and GPRC5A, belongs to the family of G protein-coupled receptors (GPCRs). GPCRs are the largest and most abundant receptor family in mammals, composed of more than one thousand members (1). Retinoic acids (RA) are a group of pleiotropic signaling molecules that regulate a broad range of physiologic and developmental processes. It is thought that RAIG1 may be a downstream target of RA signaling (2). RAIG1 is expressed in lung tissue and in several lung cancer cell lines, and encodes a seven-transmembrane glycoprotein presumed to be a lung tumor suppressor gene (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: SOAT1 (Sterol O-acyltransferase 1; ACAT1) is an O-acyltransferase that functions in the endoplasmic reticulum (ER) to catalyze the formation of cholesterol esters from free cholesterol and long chain fatty acyl-coenzyme A. The cholesterol esters are incorporated into cytoplasmic lipid droplets, thereby preventing excess free cholesterol from inducing lipid-mediated cell toxicity, including ER stress (1). Research studies have shown that pharmacological inhibition of SOAT1 in tumor cells induced lipid-mediated cell toxicity that suppressed tumor cell growth and promoted tumor cell apoptosis (2-3). Pharmacological SOAT1 inhibition was also shown to stimulate autophagy-mediated proteolysis in microglia, leading to enhanced clearance of amyloid peptide Aβ42 (4, 5). Collectively, these findings suggest that SOAT1 inhibition may have therapeutic potential in both cancer and Alzheimer’s disease.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The Bcl-2 family regulates apoptosis in response to a wide range of stimuli through control of mitochondrial cytochrome c release and caspase activation (1-3). Cytosolic Apaf-1 forms a complex with caspase-9 in the presence of cytochrome c and dATP, ultimately leading to caspase-9 activation and subsequent activation of caspase-3. A large number of proteins have been found to interact with Bcl-2 and other family members that have been shown to help regulate apoptosis. Aven was identified in a yeast two-hybrid screen as a bcl-xL interacting protein (4). It also interacts with other anti-apoptotic family members, including Bcl-2, but fails to interact with pro-apopotic proteins Bax and Bak. Aven inhibits apoptosis and enhances anti-apopotic activity of Bcl-xL. It interferes with association with Apaf-1 and activation of caspase-9. Aven overexpression is associated with poor prognosis in acute lymphoblastic leukemia (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: N-myc downstream-regulated gene 1 (NDRG1), also termed Cap43, Drg1, RTP/rit42, and Proxy-1, is a member of the NDRG family, which is composed of four members (NDRG1-4) that function in growth, differentiation, and cell survival (1-5). NDRG1 is ubiquitously expressed and highly responsive to a variety of stress signals including DNA damage (4), hypoxia (5), and elevated levels of nickel and calcium (2). Expression of NDRG1 is elevated in N-myc defective mice and is negatively regulated by N- and c-myc (1,6). During DNA damage, NDRG1 is induced in a p53-dependent fashion and is necessary for p53-mediated apoptosis (4,7). Research studies have shown that NDRG1 may also play a role in cancer progression by promoting differentiation, inhibiting growth, and modulating metastasis and angiogenesis (3,4,6,8,9). Nonsense mutation of the NDRG1 gene has been shown to cause hereditary motor and sensory neuropathy-Lom (HMSNL), which is supported by studies demonstrating the role of NDRG1 in maintaining myelin sheaths and axonal survival (10,11). NDRG1 is up-regulated during mast cell maturation and its deletion leads to attenuated allergic responses (12). Both NDRG1 and NDRG2 are substrates of SGK1, although the precise physiological role of SGK1-mediated phosphorylation is not known (13). NDRG1 is phosphorylated by SGK1 at Thr328, Ser330, Thr346, Thr356, and Thr366. Phosphorylation by SGK1 primes NDRG1 for phosphorylation by GSK-3.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The vaccinia-related kinase (VRK) proteins are a new group of Ser/Thr kinases in the human kinome. This mammalian kinase family comprises three members, VRK1, VRK2, and VRK3 (1-3). The VRK1 has autophosphorylation activity and phosphorylates several transcription factors, including p53 (4), ATF2 (5), and c-Jun (6). VRK2 is associated with the endoplasmic reticulum (7). VRK3 suppresses Erk activity through direct interaction and activation of the MAP kinase phosphatase VHR (8). Further functional and structural analysis of VRK proteins will elucidate important new aspects of cell regulation.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Protein observed with rictor-1 (protor-1) and protor-2 both interact with rictor and were identified as components of mTORC2 (1). The absence of protor-1 or protor-2 does not affect the assembly of other mTORC2 components into an active complex (2). Protor-1 was shown to be essential for the activation of SGK1 mediated by mTORC2 (2). Protor-2 plays a role in tristetraprolin-mediated mRNA turnover (3).

$262
3 nmol
300 µl
SignalSilence® Bcl-2 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit Bcl-2 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Bcl-2 exerts a survival function in response to a wide range of apoptotic stimuli through inhibition of mitochondrial cytochrome c release (1). It has been implicated in modulating mitochondrial calcium homeostasis and proton flux (2). Several phosphorylation sites have been identified within Bcl-2 including Thr56, Ser70, Thr74, and Ser87 (3). It has been suggested that these phosphorylation sites may be targets of the ASK1/MKK7/JNK1 pathway and that phosphorylation of Bcl-2 may be a marker for mitotic events (4,5). Mutation of Bcl-2 at Thr56 or Ser87 inhibits its anti-apoptotic activity during glucocorticoid-induced apoptosis of T lymphocytes (6). Interleukin-3 and JNK-induced Bcl-2 phosphorylation at Ser70 may be required for its enhanced anti-apoptotic functions (7).

SignalSilence® SAPK/JNK siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit SAPK/JNK expression by RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce protein expression by western analysis.

Background: The stress-activated protein kinase/Jun-amino-terminal kinase SAPK/JNK is potently and preferentially activated by a variety of environmental stresses including UV and gamma radiation, ceramides, inflammatory cytokines, and in some instances, growth factors and GPCR agonists (1-6). As with the other MAPKs, the core signaling unit is composed of a MAPKKK, typically MEKK1-MEKK4, or by one of the mixed lineage kinases (MLKs), which phosphorylate and activate MKK4/7. Upon activation, MKKs phosphorylate and activate the SAPK/JNK kinase (2). Stress signals are delivered to this cascade by small GTPases of the Rho family (Rac, Rho, cdc42) (3). Both Rac1 and cdc42 mediate the stimulation of MEKKs and MLKs (3). Alternatively, MKK4/7 can be activated in a GTPase-independent mechanism via stimulation of a germinal center kinase (GCK) family member (4). There are three SAPK/JNK genes each of which undergoes alternative splicing, resulting in numerous isoforms (3). SAPK/JNK, when active as a dimer, can translocate to the nucleus and regulate transcription through its effects on c-Jun, ATF-2, and other transcription factors (3,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: DHX29 is an ATP-dependent RNA helicase that belongs to the DEAD-box helicase family (DEAH subfamily). DHX29 contains one central helicase and one helicase at the carboxy-terminal domain (1). Its function has not been fully established but DHX29 was recently shown to facilitate translation initiation on mRNAs with structured 5' untranslated regions (2). DHX29 binds 40S subunits and hydrolyzes ATP, GTP, UTP, and CTP. Hydrolysis of nucleotide triphosphates by DHX29 is strongly stimulated by 43S complexes and is required for DHX29 activity in promoting 48S complex formation (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Renin is a secreted proteinase whose enzymatic activity is to convert angiotensinogen into angiotensin I in the plasma, initiating a process that results in an elevation of blood pressure and increased sodium retention by the kidney (1). Renin is synthezed in kidney as a procursor, prorenin, which is released into circulation. Both renin and prorenin can bind to (pro)renin receptor and induce angiotensin-independent signaling events leading to activation of MAPKs and up-regulation of TGF-β1 and matrix proteins (2, 3). Defects in renin can cause renal tubular dysgenesis, a severe autosomal recessive disorder of renal tubular development (4, 5).

$262
3 nmol
300 µl
SignalSilence® NF-κB p65 siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit NF-κB p65 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).