Microsize antibodies for $99 | Learn More >>

Product listing: Phospho-SSH3 (Ser37) Antibody, UniProt ID Q8TE77 #13873 to CD44 (IM7) Rat mAb (PE-Cy7® Conjugate), UniProt ID P16070 #43675

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Slingshot homolog 3 (SSH3) is a protein phosphatase that modifies actin cytoskeleton dynamics via cofilin dephosphorylation. Cofilin is an evolutionarily conserved, actin-binding protein that severs actin filaments during processes that rely on actin filament dynamics, including cytokinesis, cell migration, invasion, and neuronal development. Actin severing and filament depolymerization are regulated through the controlled cycling of cofilin between the phosphorylated and dephosphorylated forms (1). The kinases LIMK and TESK inactivate cofilin by phosphorylating it at Ser3 (2,3). The slingshot homologs (SSH1, SSH2, and, to a lesser extent, SSH3) and chronophin/PDXP phosphatases remove phosphate from cofilin at Ser3, enabling cofilin binding to actin and filament depolymerization (3). SSH3 is widely expressed in epithelial tissues, and has been found to be non-essential for viability and fertility in knockout mice (4). While its biological function remains elusive, phosphorylation at Ser37 of SSH3 has been identified in several phosphoproteomic studies (5-7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$254
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to APC and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD11c (integrin αX, ITGAX) is a transmembrane glycoprotein that forms an α/β heterodimer with CD18 (integrin β2), which interacts with a variety of extracellular matrix molecules and cell surface proteins (1). CD11c is primarily used as a dendritic cell marker. Dendritic cells can be classified into two major types: CD11c+ conventional dendritic cells that specialize in antigen presentation, and CD11c- plasmacytoid dendritic cells that specialize in type I interferon production (2, 3). CD11c expression has also been observed on activated NK cells, subsets of B cells, monocytes, granulocytes, and some B cell malignancies including hairy cell leukemia (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The cohesin complex consists of a heterodimer between SMC1 (SMC1A or B) and SMC3, bound by additional RAD21 and STAG proteins (STAG1, 2, or 3) (1,2). These proteins form a ring-like structure that mediates the cohesion of two sister chromatids after DNA replication in S phase (1,2). RAD21 and STAG2 are phosphorylated by Polo-like kinase (PLK) during prophase, which leads to the dissociation of cohesin complexes from the chromosome arms; however, cohesin remains bound to centromeres until anaphase (3,4). RAD21 is cleaved by separin/ESPL1 in anaphase, which leads to dissociation of the remaining cohesin from centromeres, enabling sister chromatids to segregate during mitosis (5). RAD21 is also cleaved by caspase-3 and caspase-7 during apoptosis, resulting in a 64 kDa carboxy-terminal cleavage product that translocates to the cytoplasm and may help to trigger apoptosis (6,7). In addition to mediating cohesion of sister chromatids, the cohesin complex plays important roles in gene regulation and DNA repair, as SMC1 and SMC3 are both phosphorylated by ATM and ATR kinases upon DNA damage (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: One-carbon metabolism includes enzymatic reactions involving the transfer of one-carbon groups mediated by folate cofactor. The activated one-carbon groups are used by various metabolic pathways, including purine synthesis, thymidine synthesis, and remethylation of homocysteine to methionine (1). One of the enzymes in one-carbon metabolism, methionine synthase, catalyzes the conversion of 5-methyltetrahydrofolate and homocysteine to tetrahydrofolate and methionine. Methionine is further converted to S-adenosylmethionine (SAM) (1, 2). S-adenosylmethionine (SAM) is a major reactive methyl carrier and plays a critical role in epigenetic regulation (2, 3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Scribble (Scrib) was originally identified in a genetic screen in Drosophila along with cell polarity determinants Discs Large (Dlg) and Lethal giant larvae (Lgl). Drosophila mutants homozygous for these genes share similar phenotypes, including the loss of apicobasal cell polarity and neoplastic tissue overgrowth. These phenotypic similarities suggest that these three proteins function in a common pathway important for establishing and maintaining apicobasal polarity in epithelial cells (1,2). Scribble contains many leucine-rich repeats and PDZ domains important for localizing scribble to adherens junctions and basolateral regions of mammalian epithelial cells (3). Scribble reportedly binds β-catenin, APC, E-cadherin and the E6 protein from high-risk virus type of HPV through a short motif important for E6-induced cell transformation (4-8). Overexpression of scribble inhibits transformation of rodent epithelial cells by HPV E6/7 proteins (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: PTBP1 and PTBP2 are highly related pre-mRNA binding proteins that silence the splicing of alternative exons (1,2 ). While PTBP1 is widely expressed, PTBP2, also known as neural PTB or nPTB, is expressed in post-mitotic neurons. In other cell types, PTBP2 transcripts are alternatively spliced by PTBP1, which leads to nonsense-mediated decay (3). PTBP1 and 2 bind to similar regions across the transcriptome, but PTBP1 has a stronger repressive property likely due to cofactors such as Raver1 and Matrin3 (4-6). Overexpression of PTBPs in various cancers has been observed, leading to alternative splicing of key proteins in oncogenic pathways (6-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Quaking (QKI) is a member of the signal transduction and activator of RNA (STAR) protein family of RNA binding proteins (1,2). Mutations in the mouse Qki locus results in impaired myelin formation resulting in tremors (3). QKI proteins exist as homodimers, and disruption of the dimerization process is lethal in mice (2). QKI exists in different isoforms that differ in their C-terminus, resulting in unique subcellular localizations (4). The nuclear isoform of QKI, QKI-5, is involved in regulation of alternative splicing of MAG mRNA, which encodes for a protein important for myelin sheath formation and maintenance (4,5). QKI has also been implicated in schizophrenia and oligodendrocyte differentiation (6). QKI can function as a tumor suppressor, as it is regulated by p53 to stabilize miRNAs that regulate TGF-Β signaling (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: ROBO2 is a member of the roundabout (ROBO) receptor family (1). The activation of ROBO2 by SLIT ligand regulates various biological processes, including promoting stem cell senescence via WNT inhibition, destabilizing podocyte actin polymerization and adhesion, and activation of Ena/VASP to facilitate tumor cell extrusion from epithelia (2-5). In development, the SLIT-ROBO pathways play important roles in neuronal axon guidance and synapse function, retinal neurovascular formation, and muscle patterning (6-9). Loss of function mutations of ROBO2 have been associated with urinary tract anomalies and vesicoureteral reflux (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: ZBP1 (Z-DNA binding protein 1), also referred to as DAI (DNA-dependent activator of IFN-regulatory factors) and DLM-1, is a nucleotide binding protein that plays a role in tumorigenesis and innate immune responses to viral infection (1). It is expressed at high levels in lymphatic tissues and intestine and is induced in macrophages by interferon gamma or by LPS (2,3). It contains two amino terminal Z-alpha domains that bind to left-handed Z-DNA and Z-RNA (4,5). In addition, an adjacent domain binds right-handed B-DNA that allows for it to function as a cytosolic DNA sensor in innate immune responses, triggering activation of TBK1 and IRF-3, and subsequent production of type I interferons (6,7). Furthermore, ZBP1 can trigger the activation of NF-κB through interaction with the RIP homotypic interaction motif (RHIM) of RIPK1 and RIPK3 (8). ZBP1 binding to RIPK3 can also induce a process of programmed necrosis termed necroptosis (9). In contrast, its interaction with RIPK1 can repress necroptosis (10,11). The mRNA binding activity of ZBP1 is also thought to play a role in tumorigenesis. ZBP1 is repressed in metastatic breast cancer, which leads to dysregulation of mRNA targets involved in proliferation and metastasis (12,13).

$336
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to PE-Cy7® and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD14 is a leucine-rich repeat-containing pattern recognition receptor with expression largely restricted to the monocyte/macrophage cell lineage (1). Research studies have shown that CD14 is a bacterial lipopolysaccharide (LPS) binding glycoprotein, expressed as either a GPI-linked membrane protein or a soluble plasma protein (2). LPS induces an upregulation of GPI-linked CD14 expression, which facilitates TLR4 signaling and macrophage activation in response to bacterial infection (3-5).

$336
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to PE-Cy7® and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$249
100 µg
This Cell Signaling Technology antibody is conjugated to PerCP-Cy5.5® and tested in-house for direct flow cytometric analysis in human and mouse cells.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: CD44 is a type I transmembrane glycoprotein that mediates cell-cell and cell-matrix interaction through its affinity for hyaluronic acid (HA) and possibly through other parts of the extracellular matrix (ECM). CD44 is highly polymorphic, possesses a number of alternative splice variants and undergoes extensive post-translational modifications (1,2). Increased surface levels of CD44 are characteristic of T cell activation, and expression of the protein is upregulated during the inflammatory response. Research studies have shown that interactions between CD44 and HER2 are linked to an increase in ovarian carcinoma cell growth (1-3). CD44 interacts with ezrin, radixin and moesin (ERM), linking the actin cytoskeleton to the plasma membrane and the ECM (4-6). CD44 is constitutively phosphorylated at Ser325 in resting cells. Activation of PKC results in phosphorylation of Ser291, dephosphorylation of Ser325, disassociation of ezrin from CD44, and directional motility (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Siglec-10 is a sialic acid-binding Ig-like lectin that has been shown to negatively regulate innate and adaptive immune system function (1). Siglec-10 is a type 1 transmembrane protein that has four extracellular Ig-like domains, a transmembrane region, and a cytoplasmic tail with two immunoreceptor tyrosine-based inhibitory motifs (ITIM) (2). Siglec-10 is expressed in dendritic cells (DCs), monocytes, B cells, NK cells, and T cells (2, 3). Siglec-10 interacts with CD24 to suppress immune responses to danger associated molecular patterns (DAMPs) by associating with the tyrosine phosphatase SHP-1, a negative regulator of nuclear factor-kappa B (NF-κB) (4). Siglec-10 has been shown to bind soluble CD52 leading to the impairment of phosphorylation of the T cell receptor–associated kinases Lck and Zap70 and T cell activation (3). It has been proposed that this mechanism of suppression could be involved in T cell homeostasis and the prevention of type I diabetes (3). Siglec-10 has also been identified as the leukocyte ligand for vascular adhesion protein-1 (VAP-1), which plays a key role in leukocyte trafficking (5). Lectin galactoside-binding soluble 3 binding protein (LGALS3BP), a tumor-associated immunomodulatory ligand, has also been shown to bind Siglec-10 (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Immunoprecipitation

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1,2). The p300/CBP histone acetyltransferases acetylate multiple lysine residues in the amino terminal tail of histone H2B (Lys5, 12, 15, and 20) at gene promoters during transcriptional activation (1-3). Hyper-acetylation of the histone tails neutralizes the positive charge of these domains and is believed to weaken histone-DNA and nucleosome-nucleosome interactions, thereby destabilizing chromatin structure and increasing the access of DNA to various DNA-binding proteins (4,5). In addition, acetylation of specific lysine residues creates docking sites that facilitate recruitment of many transcription and chromatin regulatory proteins that contain a bromodomain, which binds to acetylated lysine residues (6). Histone H2B is mono-ubiquitinated at Lys120 during transcriptional activation by the RAD6 E2 protein in conjunction with the BRE1A/BRE1B E3 ligase (also known as RNF20/RNF40) (7). Mono-ubiquitinated histone H2B Lys120 is associated with the transcribed region of active genes and stimulates transcriptional elongation by facilitating FACT-dependent chromatin remodeling (7-9). In addition, it is essential for subsequent methylation of histone H3 Lys4 and Lys79, two additional histone modifications that regulate transcriptional initiation and elongation (10). In response to metabolic stress, AMPK is recruited to responsive genes and phosphorylates histone H2B at Lys36, both at promoters and in transcribed regions of genes, and may regulate transcriptional elongation (11). In response to multiple apoptotic stimuli, histone H2B is phosphorylated at Ser14 by the Mst1 kinase (12). Upon induction of apoptosis, Mst1 is cleaved and activated by caspase-3, leading to global phosphorylation of histone H2B during chromatin condensation. Interestingly, histone H2B is rapidly phosphorylated at irradiation-induced DNA damage foci in mouse embryonic fibroblasts (13). In this case, phosphorylation at Ser14 is rapid, depends on prior phosphorylation of H2AX Ser139, and occurs in the absence of apoptosis, suggesting that Ser14 phosphorylation may have distinct roles in DNA-damage repair and apoptosis.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: NADP+ dependent methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) is a mitochondrial enzyme that catalyzes the production of formate from 10-formyl-tetrahydrofolate, the last step in one-carbon (1-C) flow from mitochondria to cytoplasm (1,2). These one-carbon end products are required for de novo synthesis of thymidylate and purines. In the mitochondria, these essential one-carbon products are formed by a series of reactions catalyzed by a pair of enzymes (MTHFD2 and MTHFD1L), but by the trifunctional MTHFD1 enzyme in the cytoplasm (3). The 10-formyl-tetrahydrofolate synthetase MTHFD1L is widely expressed in most adult tissues and at all stages of mammalian embryonic development (1). Research studies using MTHFD1L knockout mice indicate that MTHFD1L plays an essential role in neural tube formation; mice lacking MTHFD1L displayed neural tube and craniofacial defects leading to embryonic lethality (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The actin-filament associated protein (AFAP) family consists of AFAP1, AFAP1L1, and AFAP1L2/XB130, a group of structurally similar proteins that play distinct roles in the regulation of cytoskeletal dynamics and signal transduction. Actin filament-associated protein 1-like 2 (AFAP1L2, XB130) is an adaptor protein that regulates signaling downstream of multiple kinases, including Src, Akt, and the thyroid specific kinase RET/PTC (1-3). Through these pathways, AFAP1L2/XB130 mediates transcriptional regulation, cell proliferation, motility, and microRNA expression (4,5). Research has shown that AFAP1L2/XB130 is involved in the proliferation and survival of thyroid tumor cells (6), and may have value in gastric cancer prognosis (7).

$260
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Western Blotting

Background: The CRISPR associated protein 9 (Cas9) is an RNA-guided DNA nuclease and part of the CRISPR antiviral immunity system that provides adaptive immunity against extra chromosomal genetic material (1). The CRISPR antiviral mechanism of action involves three steps: (i), acquisition of foreign DNA by host bacterium; (ii), synthesis and maturation of CRISPR RNA (crRNA), followed by the formation of RNA-Cas nuclease protein complexes; and (iii), target interference through recognition of foreign DNA by the complex and its cleavage by Cas nuclease activity (2). The type II CRISPR/Cas antiviral immunity system provides a powerful tool for precise genome editing and has potential for specific gene regulation and therapeutic applications (3). The Cas9 protein and a guide RNA consisting of a fusion between a crRNA and a trans-activating crRNA (tracrRNA) must be introduced or expressed in a cell. A 20-nucleotide sequence at the 5' end of the guide RNA directs Cas9 to a specific DNA target site. As a result, Cas9 can be "programmed" to cut various DNA sites both in vitro and in cells and organisms. CRISPR/Cas9 genome editing tools have been used in many organisms, including mouse and human cells (4,5). Research studies demonstrate that CRISPR can be used to generate mutant alleles or reporter genes in rodents and primate embryonic stem cells (6-8).Cas9 (S. aureus) is a Cas9 ortholog that is smaller, but as efficient, as the more commonly used Cas9 ortholog, Cas9 (S. Pyogenes) (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Centrins are small conserved microtubule nucleating proteins localized to centrosomes, also known as microtubule organizing centers (MTOC), in eukaryotic cells. Centrin-1 is associated with cells that have cilia and flagella, whereas centrin-2 and -3 are ubiquitously expressed and important in centrosome duplication during cell division, as well as the structure and function of the MTOC (1-3). Human centrin-2 has also been shown to localize to nuclear pores and to have a role in regulation of mRNA export (4). The yeast ortholog of centrin-2, CDC31, plays a part in control of protein degradation and sensitivity to DNA damage (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The putative transcription factor DIDO1 (death inducer obliterator 1, also termed DIO-1 or DATF1) contains a pair of zinc finger motifs and is upregulated by apoptotic stimuli. DIDO1 is expressed in the developing limb and may play a role in controlling programmed cell death during development (1-3). Nuclear translocation of DIDO1 during apoptosis is associated with its apoptotic activity (2). Alternative splicing produces the DIDO-1, -2 and -3 isoforms (also termed DIO-1, -2, -3), whose targeted disruption in mice produces a phenotype similar to myelodysplastic/myeloproliferative disease (MPS/MPD) in humans (3). DIDO3, the largest of the splice variants, is associated with the centrosome and plays a role in mitotic checkpoint and chromosome stability (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Fragile X syndrome is a genetic disorder characterized by a spectrum of physical and behavioral features and is a frequent form of inherited mental retardation (1). X-linked FMRP (FMR-1) and its two autosomal homologs, FXR1 and FXR2, are polyribosome-associated RNA-binding proteins that are involved in the pathogenesis of fragile X syndrome (1-3). Each of the fragile X proteins can self-associate, as well as form heteromers with the other two related proteins (3). FMRP can act as a translation regulator and is a component of RNAi effector complexes (RISC), suggesting a role in gene silencing (4). The Drosophila homolog of FMRP (dFMRP) associates with Argonaute 2 (Ago2) and Dicer and can coimmunoprecipitate with miRNA and siRNA (5). These results suggest that fragile X syndrome is related to abnormal translation caused by defects in RNAi-related pathways. In addition, FMRP, FXR1, and FXR2 are components of stress granules (SG) and have been implicated in the translational regulation of mRNAs (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Mena (mammalian enabled), EVL, and VASP are members of the Ena/VASP family, which is involved in controlling cell shape and cell movement by shielding actin filaments from capping proteins (1). Ena/VASP proteins have three specific domains: an amino-terminal EVH1 domain controlling protein localization; a central proline-rich domain mediating interactions with both SH3 and WW domain containing proteins, including profilin; and a carboxy-terminal domain causing tetramerization and binding to actin (2). Mena interacts with actin filaments at the growing ends localizing to lamellipodia and to tips of growth cone filopodia in neurons. Axons projecting from interhemispheric cortico-cortical neurons are misrouted in newborn, homozygous Mena knock-out mice (3). Mena is phosphorylated at Ser236 by PKA, thereby promoting filopodial formation and elongation in the growth cone (4).Three forms of Mena corresponding to 80, 88 and 140 kD are known. The 80 kD protein is broadly expressed in contrast to the 140 kD protein which is enriched in neural cell types. Alternative splicing produces these forms. The 88 kD protein is mainly found in embryonic cell types and is likely the result of post-translational modification. Expression of all three forms is completely eliminated in Mena homozygous mutant animals (1, 3).

$293
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: The Drosophila piwi gene was identified as being required for the self-renewal of germline stem cells (1). Piwi homologs are well conserved among various species including Arabidopsis, C. elegans, and Homo sapiens (1). Both Miwi and Mili proteins are mouse homologs of Piwi and contain a C-terminal Piwi domain (2). Miwi and Mili bind to Piwi-interacting RNAs (piRNAs) in male germ cells and are essential for spermatogenesis in mice (3-5).

$262
3 nmol
300 µl
SignalSilence® ATF-2 siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit ATF-2 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: The transcription factor ATF-2 (also called CRE-BP1) binds to both AP-1 and CRE DNA response elements and is a member of the ATF/CREB family of leucine zipper proteins (1). ATF-2 interacts with a variety of viral oncoproteins and cellular tumor suppressors and is a target of the SAPK/JNK and p38 MAP kinase signaling pathways (2-4). Various forms of cellular stress, including genotoxic agents, inflammatory cytokines, and UV irradiation, stimulate the transcriptional activity of ATF-2. Cellular stress activates ATF-2 by phosphorylation of Thr69 and Thr71 (2-4). Both SAPK and p38 MAPK have been shown to phosphorylate ATF-2 at these sites in vitro and in cells transfected with ATF-2. Mutations of these sites result in the loss of stress-induced transcription by ATF-2 (2-4). In addition, mutations at these sites reduce the ability of E1A and Rb to stimulate gene expression via ATF-2 (2).

$262
3 nmol
300 µl
SignalSilence® FoxO1 siRNA II (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit FoxO1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Mouse

Background: The Forkhead family of transcription factors is involved in tumorigenesis of rhabdomyosarcoma and acute leukemias (1-3). Within the family, three members (FoxO1, FoxO4, and FoxO3a) have sequence similarity to the nematode orthologue DAF-16, which mediates signaling via a pathway involving IGFR1, PI3K, and Akt (4-6). Active forkhead members act as tumor suppressors by promoting cell cycle arrest and apoptosis. Increased expression of any FoxO member results in the activation of the cell cycle inhibitor p27 Kip1. Forkhead transcription factors also play a part in TGF-β-mediated upregulation of p21 Cip1, a process negatively regulated through PI3K (7). Increased proliferation results when forkhead transcription factors are inactivated through phosphorylation by Akt at Thr24, Ser256, and Ser319, which results in nuclear export and inhibition of transcription factor activity (8). Forkhead transcription factors can also be inhibited by the deacetylase sirtuin (SirT1) (9).

$262
3 nmol
300 µl
SignalSilence® p27 Kip1 siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit p27 Kip1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: p27 Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. Like its relatives, p57 Kip2 and p21 Waf1/Cip1, the ability to enforce the G1 restriction point is derived from its inhibitory binding to CDK2/cyclin E and other CDK/cyclin complexes. Expression levels of p27 are upregulated in quiescent cells and in cells treated with cAMP or other negative cell cycle regulators. Downregulation of p27 can be induced by treatment with interleukin-2 or other mitogens; this involves phosphorylation of p27 and its degradation by the ubiquitin-proteasome pathway (1-4).

$262
3 nmol
300 µl
SignalSilence® XIAP siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit XIAP expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce protein expression by western analysis.
REACTIVITY
Human

Background: The inhibitor of apoptosis protein (IAP) family consists of an evolutionarily conserved group of apoptosis inhibitors containing a conserved 70 amino acid BIR (baculovirus inhibitor repeat) domain (1,2). Human members of this family include c-IAP1, c-IAP2, XIAP, survivin, livin, and NAIP. Overexpression of IAP family members, particularly survivin and livin, in cancer cell lines and primary tumors suggests an important role for these proteins in cancer progression (3-5). In general, the IAP proteins function through direct interactions to inhibit the activity of several caspases, including caspase-3, caspase-7, and caspase-9 (5,6). In addition, binding of IAP family members to the mitochondrial protein Smac blocks their interaction with caspase-9, thereby allowing the processing and activation of the caspase (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Zinc finger MYND domain-containing protein 8 (ZMYND8), also referred to as receptor for activated C-kinase 7 (Rack7) and protein kinase C-binding protein 1 (PRKCBP1), is a DNA damage response protein and a transcriptional regulator that is a close homolog of ZMYND11 (BS69) (1). ZMYND8 binds to H3K36me2 and H4K16ac, two histone marks associated with active transcription (2). This protein is targeted to sites of DNA damage within actively transcribed genes, and recruits the H3K4me3-specific histone demethylase KDM5A/JARID1A and nucleosome remodeling and histone deacetylation (NuRD) complex (1-3). Together, these protein complexes mediate transcriptional repression and allow for subsequent double-strand break repair via homologous recombination. ZMYND8 contains a bromodomain and a PWWP domain near its N-terminus, and a MYND domain towards the C-terminus, the latter of which mediates interaction with the NuRD complex (1). ZMYND8 also functions to recruit the H3K4me3-specific histone demethylase KDM5C/JARID1C to enhancer and super-enhancer regions, and functions as a negative regulator of gene expression (4). ZMYND8 and JARID1C are both putative tumor suppressor proteins, and knockdown of either of these proteins leads to derepression of S100 oncogenes (1). ZMYND8 expression is altered in breast and cervical cancer (4, 5), and has been found to be translocated with RELA in at least one patient with acute erythroid leukemia (6). Knock-down of ZMYND8 expression in breast cancer cell lines increases anchorage-independent cell growth, cell migration and invasion, and tumor growth in mouse xenograft models (4).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin)

Background: Chromosomal translocations result in misregulation of the proto-oncogene BCL6 in patients with B cell-derived non-Hodgkin's lymphoma (1). The BCL6 gene is selectively expressed in mature B cells and encodes a nuclear phosphoprotein that belongs to the BTB/POZ zinc finger family of transcription factors (2,3). BCL6 protein can bind to target DNA sequences of Stat6 and, analogous to Stat6, modulate the expression of interleukin-4-induced genes (4). Furthermore, BCL6 restrains p53-dependent senescence, making BCL6-active tumors functionally p53-negative (5). The mitogen-activated protein kinases, Erk1 and Erk2, but not JNK, phosphorylate BCL6 at multiple sites. Phosphorylation of BCL6 at Ser333 and Ser343 results in degradation of BCL6 by the ubiquitin/proteasome pathway in B cells (6,7). In addition, BCL6 is acetylated and its transcriptional repressor function is inhibited by the transcriptional co-activator p300 (8).

$229
100 µg
This Cell Signaling Technology antibody is conjugated to PE-Cy7® and tested in-house for direct flow cytometric analysis in human and mouse cells.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: CD44 is a type I transmembrane glycoprotein that mediates cell-cell and cell-matrix interaction through its affinity for hyaluronic acid (HA) and possibly through other parts of the extracellular matrix (ECM). CD44 is highly polymorphic, possesses a number of alternative splice variants and undergoes extensive post-translational modifications (1,2). Increased surface levels of CD44 are characteristic of T cell activation, and expression of the protein is upregulated during the inflammatory response. Research studies have shown that interactions between CD44 and HER2 are linked to an increase in ovarian carcinoma cell growth (1-3). CD44 interacts with ezrin, radixin and moesin (ERM), linking the actin cytoskeleton to the plasma membrane and the ECM (4-6). CD44 is constitutively phosphorylated at Ser325 in resting cells. Activation of PKC results in phosphorylation of Ser291, dephosphorylation of Ser325, disassociation of ezrin from CD44, and directional motility (4).