Microsize antibodies for $99 | Learn More >>

Product listing: KLC1 (D2T2R) Rabbit mAb, UniProt ID Q07866 #48633 to Bub3 (D8G6) Rabbit mAb, UniProt ID O43684 #8194

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Kinesins are heterotetrameric motor proteins that transport cargo along microtubule tracks toward their plus ends (anterograde direction) in an ATP-dependent manner. Two heavy chains contain the motor activity, while two kinesin light chains act as adaptor proteins that may be required for binding of specific cargo and/or regulation of heavy chain catalytic activity. The amino terminus of kinesin light chain 1 (KLC1) binds to kinesin heavy chains while the KLC1 carboxy-terminal tetratricopeptide repeat (TPR) domain binds cargo (1-3). Phosphorylation of KLC1 at Ser521 by AMPK may regulate insulin granule dynamics (4,5). Research studies identify a KLC1-ALK fusion protein in human lung adenocarcinoma, and this finding may provide insight for future therapeutics (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Maspin (SERPINB5) was discovered as a mammary tumor suppressor that is expressed in normal mammary epithelium but lost in most breast cancer cell lines (1). While maspin is related to the serpin family of serine protease inhibitors, it may not function as a protease inhibitor (2). It plays an essential role in embryonic development through critical roles in cell adhesion (3). While the precise mechanism of maspin signaling is unclear (4), the tumor suppressing activity of maspin has been attributed to its ability to inhibit cell invasion/metastasis (5,6) and angiogenesis (7), while promoting apoptosis (8). Nuclear translocation of active IKKα has been shown to repress maspin transcription and promote prostate cancer metastasis (9).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Catenin δ-1 (p120 catenin) has an amino-terminal coiled-coil domain followed by a regulatory domain containing multiple phosphorylation sites and a central Armadillo repeat domain of ten linked 42-amino acid repeats. The carboxy-terminal tail has no known function (1). Catenin δ-1 fulfills critical roles in the regulation of cell-cell adhesion as it regulates E-cadherin turnover at the cell surface to determine the level of E-cadherin available for cell-cell adhesion (2). Catenin δ-1 has both positive and negative effects on cadherin-mediated adhesion (3). Actin dynamics are also regulated by catenin δ-1, which modulates RhoA, Rac, and cdc42 proteins (1). Analogous to β-catenin, catenin δ-1 translocates to the nucleus, although its role at this location is unclear. Many studies show that catenin δ-1 is expressed irregularly or is absent in various types of tumor cells, suggesting that catenin δ-1 may function as a tumor suppressor (4).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Ret (E1N9A) Rabbit mAb (Flow Preferred) #14699.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: The Ret proto-oncogene (c-Ret) is a receptor tyrosine kinase that functions as a multicomponent receptor complex in conjunction with other membrane-bound, ligand-binding GDNF family receptors (1). Ligands that bind the Ret receptor include the glial cell line-derived neurotrophic factor (GDNF) and its congeners neurturin, persephin, and artemin (2-4). Research studies have shown that alterations in the corresponding RET gene are associated with diseases including papillary thyroid carcinoma, multiple endocrine neoplasia (type 2A and 2B), familial medullary thyroid carcinoma, and a congenital developmental disorder known as Hirschsprung’s disease (1,3). The Tyr905 residue located in the Ret kinase domain plays a crucial role in Ret catalytic and biological activity. Substitution of Phe for Tyr at position 905 dramatically inhibits Ret autophosphorylation activity (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Phospholipase A2 (PLA2) is a superfamily of enzymes that hydrolyze glycero-3-phosphocholines and release fatty acids and lysophospholipids (1). PLA2G1B is a member of this superfamily in the 1B group that is expressed most highly in the pancreatic acinar cells (2). Evidence suggests that PLA2G1B plays a role in the absorption and storage of extra energy as fats are metabolized (1,2). Lysophospholipids generated by PLA2G1B inhibit fatty acid oxidation in the liver and reduce energy expenditure, leading to diet-induced obesity and type 2 diabetes with a high fat diet (1). Therefore, a potential intervention of obesity and diabetes could target PLA2G1B in the digestive tract (2).

$262
3 nmol
300 µl
SignalSilence® RIP3 siRNA II (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit RIP3 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Mouse

Background: The receptor-interacting protein (RIP) family of serine-threonine kinases (RIP, RIP2, RIP3, and RIP4) are important regulators of cellular stress that trigger pro-survival and inflammatory responses through the activation of NF-κB, as well as pro-apoptotic pathways (1). In addition to the kinase domain, RIP contains a death domain responsible for interaction with the death domain receptor Fas and recruitment to TNF-R1 through interaction with TRADD (2,3). RIP-deficient cells show a failure in TNF-mediated NF-κB activation, making the cells more sensitive to apoptosis (4,5). RIP also interacts with TNF-receptor-associated factors (TRAFs) and can recruit IKKs to the TNF-R1 signaling complex via interaction with NEMO, leading to IκB phosphorylation and degradation (6,7). Overexpression of RIP induces both NF-κB activation and apoptosis (2,3). Caspase-8-dependent cleavage of the RIP death domain can trigger the apoptotic activity of RIP (8).

$262
3 nmol
300 µl
SignalSilence® Tuberin/TSC2 siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit tuberin/TSC2 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Tuberin is a product of the TSC2 tumor suppressor gene and an important regulator of cell proliferation and tumor development (1). Mutations in either TSC2 or the related TSC1 (hamartin) gene cause tuberous sclerosis complex (TSC), an autosomal dominant disorder characterized by development of multiple, widespread non-malignant tumors (2). Tuberin is directly phosphorylated at Thr1462 by Akt/PKB (3). Phosphorylation at Thr1462 and Tyr1571 regulates tuberin-hamartin complexes and tuberin activity (3-5). In addition, tuberin inhibits the mammalian target of rapamycin (mTOR), which promotes inhibition of p70 S6 kinase, activation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1, an inhibitor of translation initiation), and eventual inhibition of translation (3,6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Cluster of Differentiation 8 (CD8) is a disulphide-linked heterodimer consisting of the unrelated α and β subunits. Each subunit is a glycoprotein composed of a single extracellular Ig-like domain, a polypeptide linker, a transmembrane part and a short cytoplasmic tail. On T cells, CD8 is the coreceptor for the T cell receptor (TCR), and these two distinct structures recognize the Antigen–Major Histocompatibility Complex (MHC). Specifically, the Ig-like domain of CD8α interacts with the α3-domain of the MHC class I molecule. CD8 ensures specificity of the TCR–antigen interaction, prolongs the contact between the T cell and the antigen presenting cell, and the α chain recruits the tyrosine kinase Lck, which is essential for T cell activation (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Emerin is a broadly expressed integral protein of the nuclear inner membrane (1). It contains a LEM domain and binds to several nuclear proteins, such as BAF (barrier-to-autointegration factor) and A- and B-type lamins, which are important in nuclear functions (2-5). Emerin may regulate gene expression through binding to other transcriptional regulators (6,7). Emerin binds to β-catenin and inhibits its nuclear accumulation (8). Recent studies demonstrate that emerin is required for HIV-1 infectivity (9). Mutations in the gene encoding emerin (EMD) are a major cause of Emery-Dreifuss muscular dystrophy (EDMD), a disorder characterized by progressive skeletal muscle weakening (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Potassium channel tetramerization domain-containing protein 12 (KCTD12) belongs to the family of KCTD proteins, which also contains KCTD8, 12b, and 16. These proteins are auxiliary subunits of GABAB receptors (1). The principal subunit of the GABAB receptor is formed by two GABAB receptors, which bind to GABAB ligands, couple to G proteins to inhibit adenylate cyclase production, and gate ion channels (e.g., the GIRK channels) (2). The auxiliary subunits contribute to receptor desensitization. KCTD12 produces fast desensitization by uncoupling the βγ subunits of the G protein from their effector channels (3). Research studies indicate that KCTD12 represents a biomarker with diagnostic and prognostic potential for gastrointestinal stromal tumors (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: NAC1 or nuclear accumbens-1 is a nuclear factor that belongs to the POZ/BTB (Pox virus and zinc finger/bric-a-brac tramtrack broad complex) domain family. Also known as BTBD14B, it was originally identified in a unique neuronal forebrain structure responsible for reward motivation and addictive behaviors (1,2). NAC1 recruits HDAC3 and HDAC4 to transcriptionally repress gene expression in neuronal cells (3) and specifically co-represses other POZ/BTB proteins in the central nervous system (4). NAC1 is upregulated in several tumor types, including breast, renal cell, and hepatocellular carcinoma, as well as high grade ovarian serous carcinoma, where it has long been suspected as a chemoresistance gene (5,6). The chemoresistance mechanism reportedly occurs through NAC1 negative regulation of the GADD45 pathway (7). NAC1 has also been described as part of the extended transcriptional network in pluripotent cells that involves Oct-4, Sox2, Nanog, Sall1, KLF4 and Sall4 (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The Set1 histone methyltransferase protein was first identified in yeast as part of the Set1/COMPASS histone methyltransferase complex, which methylates histone H3 at Lys4 and functions as a transcriptional co-activator (1). While yeast contain only one known Set1 protein, six Set1-related proteins exist in mammals: SET1A, SET1B, MLL1, MLL2, MLL3, and MLL4, all of which assemble into COMPASS-like complexes and methylate histone H3 at Lys4 (2,3). These Set1-related proteins are each found in distinct protein complexes, all of which share the common subunits WDR5, RBBP5, ASH2L, CXXC1 and DPY30. These subunits are required for proper complex assembly and modulation of histone methyltransferase activity (2-6). MLL1 and MLL2 complexes contain the additional protein subunit, menin (6). Like yeast Set1, all six Set1-related mammalian proteins methylate histone H3 at Lys4 (2-6). MLL translocations are found in a large number of hematological malignancies, suggesting that Set1/COMPASS histone methyltransferase complexes play a critical role in leukemogenesis (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Liprins are a family of proteins known to function as LAR (leukocyte common antigen-related) transmembrane protein tyrosine phosphatase-interacting proteins (1). This interaction has been studied in connection to both axon guidance and mammary gland development (1,2). Liprin β1, a member of this family, is a widely expressed, multivalent cytosolic protein. Liprin β1 has been found to homodimerize at the N terminus and to heterodimerize with Liprin α1 and the metastasis-associated protein S100A4 at the C terminus (1,2). The interaction with S100A4 is believed to both inhibit its phosphorylation and to modulate complex formation with Liprin α1, resulting in a change in LAR cell adhesion properties, thus promoting cell motility and tumor metastasis (2). Liprin β1 has also been shown to have higher expression levels and to associate with KANK proteins in melanoma and to be a potential regulator of lymphatic vessel integrity (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Myocyte enhancer factor 2D (MEF2D) is a member of the MEF2 family of transcription factors. In mammals, there are four MEF2C-related genes (MEF2A, MEF2B, MEF2C, and MEF2D) that encode proteins that exhibit significant amino acid sequence similarity within their DNA binding domains and, to a lesser extent, throughout the rest of the proteins (1). MEF2 proteins contain a highly conserved N-terminal MADS-box domain, an MEF2 domain, and a more highly variable C-terminal transactivation domain (2). The MEF2 family members were originally described as muscle-specific DNA binding proteins that recognize MEF2 motifs found within the promoters of many muscle-specific genes (3,4); however, more recently they have been found to play critical roles in other physiological processes, such as heart formation and nervous system development (5,6). As such, alterations in MEF2 protein levels can result in developmental and neurological disorders, as well as other diseases such as liver fibrosis and many types of cancer (7). Specifically, MEF2D expression in hepatocellular carcinoma (HCC) is associated with higher levels of proliferation and poor prognosis (8). MEF2D is also overexpressed in clinical colorectal cancer tissues, where its high expression correlates with metastatic process. Functional investigations show that MEF2D promotes cancer cell invasion and epithelial-mesenchymal transition (EMT) and that it is essential for certain microenvironment signals to induce EMT and metastasis in vivo (9). Alternatively, MEF2D may function as a tumor suppressor in lipo- and leiomyosarcoma, as decreased MEF2D activity results in increased cell proliferation and anchorage-independent growth (10). MEF2D may also act as a tumor suppressor in rhabdomyosarcoma, as loss of MEF2D expression results in inhibition of differentiation, increased cell proliferation, and increased anchorage-independent growth (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Nucleolor protein 66 (NO66), also known as Myc-associated protein with a jumonji C (JmjC) domain (MAPJD), or ribosomal oxygenase 1, belongs to a large family of JmjC-domain-containing oxygenase proteins. NO66 exhibits both ribosomal histidine hydroxylase and histone demethylase activities, and plays a key role in regulation of gene transcription, RNA processing, and translation. NO66-mediated hydroxylation of ribosomal protein L8 (Rpl8) may play a role in regulation of protein synthesis (1). NO66 also functions to repress transcription by demethylating histone H3 lys4 and lys36, two histone marks that are important for transcriptional activation (2). The interaction of NO66 with the transcription factor osterix (OSX) regulates osteoblast differentiation and bone formation through repression of OSX target genes (3,4). In embryonic stem cells, the PHF19 protein recruits NO66 along with polycomb repressor complex 2 (PRC2) to differentiation-specific target genes to repress transcription through demethylation of histone H3 lys36 and methylation of histone H3 lys27, the latter mark being associated with transcriptional repression (2). NO66 is overexpressed in non-small cell lung cancer and colorectal cancer, and is associated with poor prognosis (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Sorting nexins are a family of cytoplasmic proteins characterized by the presence of a phosphatidylinositol 3-phosphate (PI3P) binding phox (PX) domain. This binding occurs mainly in the early endosome and allows for trafficking of the bound protein to either a degradative or recycling pathway (1).Sorting nexin-17, or SNX17, has been shown to preferentially drive trafficking of integrins, receptors, and a variety of other proteins away from degradative pathways (1). In addition to PX domain interactions, SNX17 also binds the NPxY motif on the cytoplasmic tails of lipoprotein receptors via its FERM domain (protein 4.1, ezrin, radixin and moesin). Some of these proteins include the low density lipoprotein receptor-related protein 1 (LRP1) and apolipoprotein E receptor 2 (ApoER2) (3,4). LRP1 is known to bind APP, regulating its processing and causing an increase in Aβ production, a known risk factor for AD. By binding APP in addition to LRP1, SNX17 recycles both proteins to the plasma membrane, maintaining normal cell surface levels of each (3). SNX17 acts similarly with ApoER2, facilitating trafficking and increasing recycling to the plasma membrane. This assists in regulating the binding of ApoER2 and reelin, an interaction that is known to be important for neuronal migration and the formation of brain structures in early development, as well as synaptic function, learning, and memory in the adult brain (4). Through these and other interactions, SNX17 has been shown to have a potential role in a wide variety of neuronal pathways and diseases.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Visinin-like Protein 1, also called VILIP-1 and VSNL1, is a calcium-sensing protein in the central nervous system. Visinin-like Protein 1 exhibits a widespread distribution with high expression in the CNS, and lower expression levels in some peripheral tissues (1). Visinin-like Protein 1 responds to increased intracellular calcium concentration by translocating from the cytoplasm to membranes through calcium-dependent myristoylation at its N-terminus that allows interaction with membranes (2). This change in localization has been proposed to facilitate the activation of compartment-specific signal transduction for the selective activation of downstream signaling cascades (3,4). In Alzheimer’s disease, Visinin-like Protein 1 expression is decreased in the brain, including a reduced number of Visinin-like Protein 1 immunoreactive neurons (5); however, the presence of the protein is increased in the CSF (6), suggesting that it is released from neurons during insults.

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: TNFRSF8/CD30 is a type-I transmembrane glycoprotein that is a member of the TNFR superfamily. CD30 is synthesized as a precursor protein that undergoes extensive posttranslational modification before becoming embedded in the plasma membrane as a 120-kDa transmembrane protein (1,2). The expression of CD30 is upregulated in activated T-cells and may trigger costimulatory signaling pathways upon its engagement (3,4). While its expression is normally restricted to subsets of activated T-cells and B-cells, CD30 expression is robustly upregulated in hematologic malignancies, such as Hodgkin’s lymphoma (HL), anaplastic large cell lymphoma (ALCL), and adult T-cell leukemia, thus making it an attractive target for therapeutic intervention (5,6). Research studies have suggested that in certain disease contexts, CD30 recruits TRAF2 and TRAF5 adaptor proteins to drive NF-kappa B activation, aberrant cell growth, and cytokine production (7-9). CD30 signaling is also regulated by TACE-dependent proteolytic cleavage of its ectodomain, which results in reduced CD30L-dependent activation of CD30+ cells (10, 11).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: B-cell CLL/lymphoma 9-like protein (BCL9L, BL2, Bcl9-2, DLNB11) is a transcriptional activator that was originally identified in silico based on homology to BCL9 (1). BCL9L was subsequently found to play an important role in Wnt/β-catenin signaling by interacting with β-catenin and enhancing the transactivation potential of the β-catenin/TCF complex (2). Research studies show that BCL9L can increase the tumorigenic effect of aberrant Wnt signaling in some cases of colorectal cancer (2). Expression of BCL9L is correlated with tumor progression in colorectal (3) and breast cancer (4). Targeted deletion of BCL9 and BCL9L in the intestinal epithelium resulted in abrogation of Wnt target genes, including those controlling epithelial-mesenchymal transition and stem-cell like properties (5).

$262
100 transfections
300 µl
SignalSilence® Rheb siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit Rheb expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Ras Homolog Enriched in Brain (Rheb) is an evolutionarily conserved member of the Ras family of small GTP-binding proteins originally found to be rapidly induced by synaptic activity in the hippocampus following seizure (1). While it is expressed at relatively high levels in the brain, Rheb is widely expressed in other tissues and may be induced by growth factor stimulation. Like other Ras family members, Rheb triggers activation of the Raf-MEK-MAPK pathway (2). Biochemical and genetic studies demonstrate that Rheb has an important role in regulating the insulin/TOR signaling pathway (3-6). The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that acts as a sensor for ATP and amino acids, balancing the availability of nutrients with translation and cell growth. The tuberin/hamartin (TSC2/TSC1) complex inhibits mTOR activity indirectly by inhibiting Rheb through the tuberin GAP activity (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 20S proteasome is the major proteolytic enzyme complex involved in intracellular protein degradation. PA700, PA28, and PA200 are three major protein complexes that function as activators of the 20S proteasome. There are three evolutionarily conserved subunits of PA28: PA28α (PSME1), PA28β (PSME2), and PA28γ (PSME3) (1,2). PA28α and PA28β form a heteroheptameric complex and function by binding to the 20S complex at its opening site(s). The PA28α/β complex is present throughout the cell and participates in MHC class I antigen presentation by promoting the generation of antigenic peptides from foreign proteins (2). PA28γ exists in the form of a homoheptamer and is mainly located in the nucleus. The PA28γ complex exerts its function by binding and guiding specific nuclear target proteins to the 20S proteasome for further degradation (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The eukaryotic mRNA 3' poly(A) tail interacts with the 5' cap structure to regulate translation of mRNA transcripts (1). The eIF4G translation initiation factor associates with poly(A) binding protein (PABP) to circularize mRNA (1,2). Paip1 is a PABP interacting protein that binds eIF4A to stimulate translation (3). A second PABP binding protein, Paip2, inhibits translation by interfering with PABP function. Specifically, Paip2 reduces the affinity of PABP for poly(A) RNA and competes with Paip1 for PABP binding (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Twinfilin is an actin monomer-binding protein found in all eukaryotes (1). Mammals have three isoforms. Twinfilin-1 and twinfilin-2a are expressed in most non-muscle cell types, whereas twinfilin-2b is the main isoform in adult heart and skeletal muscle (2). Twinfilins are composed of two ADF-homology domains connected by a 30 kDa linker region. All twinfilins have been shown to form a 1:1 complex with G-actin, but not F-actin (reviewed in 3). Twinfilin-1 was originally known as A6 protein tyrosine kinase and thought to be part of a novel class of protein kinases. However, the protein was renamed after further studies showed no evidence of tyrosine kinase activity (4). Twinfilin-1 helps to prevent the actin filament assembly by forming a complex with actin monomers and, in mammals, has been shown to cap the filament barbed ends. It has been suggested that this regulates cell motility (5). Suppression of twinfilin-1 has also been shown to slow lymphoma cell migration to lymph nodes (6).

$263
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to violetFluor™ 450 and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Cluster of Differentiation 4 (CD4) is a glycoprotein composed of an amino-terminal extracellular domain (four domains: D1-D4 with Ig-like structures), a transmembrane part and a short cytoplasmic tail. CD4 is expressed on the surface of T helper cells, regulatory T cells, monocytes, macrophages and dendritic cells, and plays an important role in the development and activation of T cells. On T cells, CD4 is the co-receptor for the T cell receptor (TCR), and these two distinct structures recognize the Antigen–Major Histocompatibility Complex (MHC). Specifically, the D1 domain of CD4 interacts with the β2-domain of the MHC class II molecule. CD4 ensures specificity of the TCR–antigen interaction, prolongs the contact between the T cell and the antigen presenting cell and recruits the tyrosine kinase Lck, which is essential for T cell activation (1).

$263
100 tests
500 µl
This Cell Signaling Technology antibody is conjugated to PE and tested in-house for direct flow cytometry analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD14 is a leucine-rich repeat-containing pattern recognition receptor with expression largely restricted to the monocyte/macrophage cell lineage (1). Research studies have shown that CD14 is a bacterial lipopolysaccharide (LPS) binding glycoprotein, expressed as either a GPI-linked membrane protein or a soluble plasma protein (2). LPS induces an upregulation of GPI-linked CD14 expression, which facilitates TLR4 signaling and macrophage activation in response to bacterial infection (3-5).

$229
100 µg
This Cell Signaling Technology antibody is conjugated to APC and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: F4/80 (EMR1) is a heavily glycosylated G-protein-coupled receptor and is a well-established marker for mouse macrophages (1-3). Expression of F4/80 has also been observed in microglia and subset populations of dendritic cells (4).

$262
3 nmol
300 µl
SignalSilence® Acetyl-CoA Carboxylase 1 siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit Acetyl-CoA Carboxylase 1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce protein expression by western analysis.
REACTIVITY
Human

Background: Acetyl-CoA carboxylase (ACC) catalyzes the carboxylation of acetyl-CoA to malonyl-CoA (1). It is the key enzyme in the biosynthesis and oxidation of fatty acids (1). In rodents, the 265 kDa ACC1 (ACCα) form is primarily expressed in lipogenic tissues, while 280 kDa ACC2 (ACCβ) is the main isoform in oxidative tissues (1,2). However, in humans, ACC2 is the predominant isoform in both lipogenic and oxidative tissues (1,2). Phosphorylation by AMPK at Ser79 or by PKA at Ser1200 inhibits the enzymatic activity of ACC (3). ACC is a potential target of anti-obesity drugs (4,5).

$262
50-100 transfections
300 µl
SignalSilence® MEK2 siRNA from Cell Signaling Technology allows the researcher to specifically inhibit MEK2 expression using RNA interference, a method in which gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce protein expression in specified cell lines.
REACTIVITY
Human

Background: MEK1 and MEK2, also called MAPK or Erk kinases, are dual-specificity protein kinases that function in a mitogen activated protein kinase cascade controlling cell growth and differentiation (1-3). Activation of MEK1 and MEK2 occurs through phosphorylation of two serine residues at positions 217 and 221, located in the activation loop of subdomain VIII, by Raf-like molecules. MEK1/2 is activated by a wide variety of growth factors and cytokines and also by membrane depolarization and calcium influx (1-4). Constitutively active forms of MEK1/2 are sufficient for the transformation of NIH/3T3 cells or the differentiation of PC-12 cells (4). MEK activates p44 and p42 MAP kinase by phosphorylating both threonine and tyrosine residues at sites located within the activation loop of kinase subdomain VIII.

$262
3 nmol
300 µl
SignalSilence® Met siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit Met expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Met, a high affinity tyrosine kinase receptor for hepatocyte growth factor (HGF, also known as scatter factor) is a disulfide-linked heterodimer made of 45 kDa α- and 145 kDa β-subunits (1,2). The α-subunit and the amino-terminal region of the β-subunit form the extracellular domain. The remainder of the β-chain spans the plasma membrane and contains a cytoplasmic region with tyrosine kinase activity. Interaction of Met with HGF results in autophosphorylation at multiple tyrosines, which recruit several downstream signaling components, including Gab1, c-Cbl, and PI3 kinase (3). These fundamental events are important for all of the biological functions involving Met kinase activity. The addition of a phosphate at cytoplasmic Tyr1003 is essential for Met protein ubiquitination and degradation (4). Phosphorylation at Tyr1234/1235 in the Met kinase domain is critical for kinase activation. Phosphorylation at Tyr1349 in the Met cytoplasmic domain provides a direct binding site for Gab1 (5). Research studies have shown that altered Met levels and/or tyrosine kinase activities are found in several types of tumors, including renal, colon, and breast. Thus, investigators have concluded that Met is an attractive potential cancer therapeutic and diagnostic target (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The Mitotic Checkpoint Complex (MCC), which contains Bub1, Bub1b, Bub3, Mad2, and Cdc20, controls chromosome segregation and monitors kinetochore-microtubule interactions (1). During mitosis, the MCC complex inhibits the ubiquitin ligase activity of the Anaphase Promoting Complex/Cyclosome (APC/C), thereby preventing cells with unaligned chromosomes from prematurely entering anaphase (2). Research studies have shown that Bub1b and Bub1 kinases are mutated in several types of human malignancies including hematopoietic, colorectal, lung, and breast cancers (3). Biallelic mutations in Bub1b have been found in mosaic variegated aneuploidy syndrome and premature chromatid separation syndrome (4). Bub1b mouse germline knockouts are embryonic lethal with heterozygous animals displaying genetic instability, early aging phenotypes, and increased cancer susceptibility (5). Bub3 binds both Bub1 and Bub1b, facilitating their recruitment to kinetochores (6), and is required for functional microtubule-kinetochore interactions (7).