Microsize antibodies for $99 | Learn More >>

Product listing: Phospho-Bad (Ser112) (7E11) Mouse mAb (Biotinylated), UniProt ID Q92934 #5193 to IFNGR1 Antibody, UniProt ID P15260 #34808

$327
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Bad (Ser112) (7E11) Mouse mAb #9296.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Bad is a proapoptotic member of the Bcl-2 family that promotes cell death by displacing Bax from binding to Bcl-2 and Bcl-xL (1,2). Survival factors, such as IL-3, inhibit the apoptotic activity of Bad by activating intracellular signaling pathways that result in the phosphorylation of Bad at Ser112 and Ser136 (2). Phosphorylation at these sites promotes binding of Bad to 14-3-3 proteins to prevent an association between Bad with Bcl-2 and Bcl-xL (2). Akt phosphorylates Bad at Ser136 to promote cell survival (3,4). Bad is phosphorylated at Ser112 both in vivo and in vitro by p90RSK (5,6) and mitochondria-anchored PKA (7). Phosphorylation at Ser155 in the BH3 domain by PKA plays a critical role in blocking the dimerization of Bad and Bcl-xL (8-10).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Total GFP Sandwich ELISA Antibody Pair is being offered as an economical alternative to our PathScan® Total GFP Sandwich ELISA Kit #7878. This antibody pair is intended for use with cotransfected GFP as a convenient means of monitoring transfection efficiency and may not detect GFP fusion proteins. Capture and detection antibodies (100X stocks) and an HRP-conjugated secondary antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The GFP rabbit capture antibody is coated onto a 96 well microplate overnight in PBS. After blocking, cell lysate is added followed by a GFP mouse detection antibody and HRP-conjugated, anti-mouse IgG antibody. HRP substrate (TMB) is then added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of GFP.
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Killer cell immunoglobulin-like receptors (KIRs) are type 1 transmembrane glycoproteins expressed by natural killer cells and subsets of CD4, CD8, and γδ T cells (1-5). Analogous to the diversity of their human leucocyte antigen class I (HLA Class I) ligands, the KIR genes are polymorphic and the content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (6-7). The KIR proteins are characterized by the number of extracellular immunoglobulin-superfamily domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain (8-10). KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM) (10), while KIR proteins with the short cytoplasmic domain lack an ITIM and instead transduce activating signals (11,12). KIR proteins play an important role in the regulation of the immune response. Combinations of KIR and HLA class I variants influence susceptibility to autoimmunity and infectious disease, as well as outcomes of haematopoietic stem cell transplantation (12-14).

$59
100 µg
This Cell Signaling Technology antibody is conjugated to FITC and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: Cluster of Differentiation 4 (CD4) is a glycoprotein composed of an amino-terminal extracellular domain (four domains: D1-D4 with Ig-like structures), a transmembrane part and a short cytoplasmic tail. CD4 is expressed on the surface of T helper cells, regulatory T cells, monocytes, macrophages and dendritic cells, and plays an important role in the development and activation of T cells. On T cells, CD4 is the co-receptor for the T cell receptor (TCR), and these two distinct structures recognize the Antigen–Major Histocompatibility Complex (MHC). Specifically, the D1 domain of CD4 interacts with the β2-domain of the MHC class II molecule. CD4 ensures specificity of the TCR–antigen interaction, prolongs the contact between the T cell and the antigen presenting cell and recruits the tyrosine kinase Lck, which is essential for T cell activation (1).

$262
3 nmol
300 µl
SignalSilence® mTOR siRNA I (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit mTOR expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Mouse

Background: The mammalian target of rapamycin (mTOR, FRAP, RAFT) is a Ser/Thr protein kinase (1-3) that functions as an ATP and amino acid sensor to balance nutrient availability and cell growth (4,5). When sufficient nutrients are available, mTOR responds to a phosphatidic acid-mediated signal to transmit a positive signal to p70 S6 kinase and participate in the inactivation of the eIF4E inhibitor, 4E-BP1 (6). These events result in the translation of specific mRNA subpopulations. mTOR is phosphorylated at Ser2448 via the PI3 kinase/Akt signaling pathway and autophosphorylated at Ser2481 (7,8). mTOR plays a key role in cell growth and homeostasis and may be abnormally regulated in tumors. For these reasons, mTOR is currently under investigation as a potential target for anti-cancer therapy (9).

$262
3 nmol
300 µl
SignalSilence® MDR1/ABCB1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit MDR1/ABCB1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: MDR1/ABCB1 belongs to the Mdr/Tap subfamily of the ATP-binding cassette transporter superfamily (1). Multidrug resistance 1 (MDR1) serves as an efflux pump for xenobiotic compounds with broad substrate specificity. MDR1 substrates include therapeutic agents such as actinomycin D, etoposide, imatinib, and doxorubicin, as well as endogenous molecules including β-amyloids, steroid hormones, lipids, phospholipids, cholesterol, and cytokines (2). Research studies have shown that MDR1 reduces drug accumulation in cancer cells, allowing the development of drug resistance (3-5). On the other hand, MDR1 expressed in the plasma membrane of cells in the blood-brain, blood-cerebral spinal fluid, or blood-placenta barriers restricts the permeability of drugs into these organs from the apical or serosal side (6,7). MDR1 is also expressed in normal tissues with excretory function such as small intestine, liver, and kidney (7). Intracellular MDR1 has been detected in the ER, vesicles, and nuclear envelope, and has been associated with cell trafficking machinery (8). Other reported functions of MDR1 include viral resistance, cytokine trafficking (9,10), and lipid homeostasis in the peripheral and central nervous system (11-13).

$499
96 assays
1 Kit
The FastScan™ Phospho-Tau (Thr181) ELISA Kit is a sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of Tau when phosphorylated at Thr181. To perform the assay, sample is incubated with a capture antibody conjugated with a proprietary tag and a second detection antibody linked to HRP, forming a sandwich with phospho-Tau (Thr181) in solution. This entire complex is immobilized to the plate via an anti-tag antibody. The wells are then washed to remove unbound material. TMB is then added. The magnitude of observed signal is proportional to the quantity of phospho-Tau (Thr181). Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse, Rat

Background: Tau is a heterogeneous microtubule-associated protein that promotes and stabilizes microtubule assembly, especially in axons. Six isoforms with different amino-terminal inserts and different numbers of tandem repeats near the carboxy terminus have been identified, and tau is hyperphosphorylated at approximately 25 sites by Erk, GSK-3, and CDK5 (1,2). Phosphorylation decreases the ability of tau to bind to microtubules. Neurofibrillary tangles are a major hallmark of Alzheimer's disease; these tangles are bundles of paired helical filaments composed of hyperphosphorylated tau. In particular, phosphorylation at Ser396 by GSK-3 or CDK5 destabilizes microtubules. Furthermore, research studies have shown that inclusions of tau are found in a number of other neurodegenerative diseases, collectively known as tauopathies (1,3).

$199
250 µl
Anti-rabbit IgG (H+L), F(ab')2 Fragment was conjugated to phycoerythrin (PE) under optimal conditions. This F(ab')2 fragment product results in less non-specific binding, as it lacks the Fc domain that can bind to the cells with Fc receptors.
APPLICATIONS

Application Methods: Flow Cytometry

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: Amyloid β (Aβ) precursor protein (APP) is a 100-140 kDa transmembrane glycoprotein that exists as several isoforms (1). The amino acid sequence of APP contains the amyloid domain, which can be released by a two-step proteolytic cleavage (1). The extracellular deposition and accumulation of the released Aβ fragments form the main components of amyloid plaques in Alzheimer's disease (1). APP can be phosphorylated at several sites, which may affect the proteolytic processing and secretion of this protein (2-5). Phosphorylation at Thr668 (a position corresponding to the APP695 isoform) by cyclin-dependent kinase is cell-cycle dependent and peaks during G2/M phase (4). APP phosphorylated at Thr668 exists in adult rat brain and correlates with cultured neuronal differentiation (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The p53 tumor suppressor protein plays a major role in cellular response to DNA damage and other genomic aberrations. Activation of p53 can lead to either cell cycle arrest and DNA repair or apoptosis (1). In addition to p53, mammalian cells contain two p53 family members, p63 and p73, which are similar to p53 in both structure and function (2). While p63 can induce p53-responsive genes and apoptosis, mutation of p63 rarely results in tumors (2). Research investigators frequently observe amplification of the p63 gene in squamous cell carcinomas of the lung, head and neck (2,3). The p63 gene contains an alternative transcription initiation site that yields a truncated ΔNp63 lacking the transactivation domain, and alternative splicing at the carboxy-terminus yields the α, β, and γ isoforms (3,4).

$299
100 µg
This Cell Signaling Technology antibody is conjugated to violetFluor™ 450 and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: Major histocompatibility complex class II (MHC class II) molecules are heterodimeric, transmembrane glycoproteins expressed on the surface of antigen-presenting cells such as macrophages, dendritic cells, and B cells. Expression can also be induced on other cell types through interferon-γ signaling (1). Prior to being displayed on the cell membrane, MHC class II molecules are loaded with exogenous peptide antigens approximately 15-24 amino acids in length that were derived from endocytosed extracellular proteins digested in the lysosome (2). Antigen-presentation through MHC class II is required for T cell activation during the immune response to extracellular pathogens (2). In humans, the MHC class II protein complex is encoded by the human leukocyte antigen gene complex (HLA). HLAs corresponding to MHC class II are HLA-DP, HLA-DM, HLA-DOA, HLA-DOB, HLA-DQ, and HLA-DR (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Ras GTPase-activating protein-binding protein 1, also known as GAP SH3 domain-binding protein 1 (G3BP1), was identified as a protein that interacts with the SH3 domain of Ras GTPase-activating protein (RasGap) (1). G3BP1 is involved in the regulation of multiple cellular processes, including mRNA decay and inhibition of translation initiation (2). Furthermore, G3BP1 is essential for the assembly of stress granules (SGs) and functions as an SG-nucleating protein (3). Research studies show that arginine demethylation of G3BP1 promotes SG assembly during oxidative stress (4).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated BLNK (D8P2H) XP® Rabbit mAb #36438.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: B cell linker protein (BLNK), also known as SLP-65 or BASH, is an adaptor molecule that plays key roles in B cell activation and B cell antigen receptor (BCR) engagement. BLNK acts at the interface between BCR-associated Syk and downstream signaling cascades (1,2). BLNK has multiple SH2 binding motifs (YXXP) at its amino terminus and an SH2 domain at its carboxy terminus. After BCR ligation, BLNK is phosphorylated by Syk at multiple YXXP motifs including Tyr72, Tyr84, Tyr96, and Tyr178 (1). These phosphorylated motifs provide docking sites for signaling molecules, such as BTK, PLCγ, and Vav. These signaling molecules bind to BLNK through their SH2 domains and together activate downstream signaling pathways (3,4). Through its SH2 domain, BLNK can also interact with tyrosine-phosphorylated targets, such as HPK1, thereby recruiting them to the BCR complex for signaling (5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Axl, Mer and Tyro3 are three members of the TAM family receptor tyrosine kinase that share a common NCAM (neural adhesion molecule)-related extracellular domain and a conserved intracellular tyrosine kinase domain. These receptors bind common homologous vitamin K dependent protein GAS6 and protein S to activate downstream signaling pathways (1). TAM family receptors are involved in the development of immune, nervous, vascular and reproductive systems, autoimmune disease, cancer drug resistance and tumor immunity response (2-5). Axl (Tyr698), Axl (Tyr702), Mer Tyr(749) and Tyro3 (Tyr681) are conserved autophosphorylation sites located in the activation loop of the respective tyrosine kinase domains. Phosphorylation at these sites is required for full kinase activation of each of the corresponding receptors (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: The 25 kDa synaptosome-associated protein (SNAP25) is a target membrane soluble, N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) that is found on neuronal presynaptic membranes. SNAP25 forms a core complex with the SNARE proteins syntaxin and synaptobrevin to mediate synaptic vesicle fusion with the plasma membrane during Ca2+-dependent exocytosis (1). This complex is responsible for exocytosis of the neurotransmitter γ-aminobutyric acid (GABA). Neurotransmitter release is inhibited by proteolysis of SNAP25 by botulinum toxins A and E (2). SNAP25 plays a secondary role as a Q-SNARE involved in endosome fusion; the protein is associated with genetic susceptibility to attention-deficit hyperactivity disorder (ADHD) (3).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: CD141/Thrombomodulin (TM, THBD, BDCA-3) is an integral membrane protein expressed on the surface of endothelial cells (1). Acting as a cofactor with Thrombin, CD141/Thrombomodulin activates and initiates the Protein C anticoagulant pathway (1-2). CD141/Thrombomodulin is expressed by a small subset of human CD11c+ myeloid dendritic cells (3-4). These CD141+XCR1+ dendritic cells cross-present antigens to naïve CD8+ T cells, priming them to become activated cytotoxic CD8+ T cells (3-5).

Background: Autophagy is a catabolic process for the autophagosome-lysosomal degradation of bulk cytoplasmic contents (1, 2). Selective autophagy targets the degradation of distinct sets of substrates and organelles (3-5). One of the best studied examples of selective autophagy involves the clearance of damaged mitochondria through a process called mitophagy. Several pathways have been described for various contexts of mitophagy, including the FUNDC1 pathway, the BNIP3 and BNIP3L/Nix pathway, and the PINK1/Parkin pathway. FUNDC1 is a mitochondrial protein that is phosphorylated by the autophagy kinase ULK1 and regulates hypoxia induced mitophagy (6, 7). BNIP3L/Nix and BNIP3 are members of the Bcl-2 family of apoptosis regulators that are expressed on mitochondria, induced by hypoxia, and have have been shown to play a role in mitophagy (8). BNIP3L/Nix is also important in the autophagic maturation of erythroid cells (9). FUNDC1, BNIP3 and BNIP3L/Nix bind to LC3 family members, targeting the mitochondria to the autophagosome.Non-hypoxic induction of mitophagy can be regulated by the PINK1/Parkin pathway, which plays causative roles in neurodegenerative disease, most notably Parkinson’s disease (10, 11). PINK1 is a mitochondrial serine/threonine kinase that is stabilized on the outer mitochondrial membrane of damaged mitochondria. Substrates of PINK1 include the E3 ubiquitin ligase Parkin and ubiquitin itself (12-14). Phosphorylation of Parkin as well as binding to phosphorylated ubiquitin leads to accumulation of ubiquitinated chains on multiple mitochondrial proteins. Ubiquitinated proteins are recognized by selective cargo receptors including SQSTM1/p62, Optineurin, and NDP52 (15-16). Autophagy cargo receptors contain an LC3-interacting region (LIR) required for binding to Atg8/LC3 family members and targeting to the autophagosome (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: CKLF-like MARVEL transmembrane domain-containing protein 6 (CMTM6) is a member of the chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (1). CMTM6 stabilizes plasma membrane expression of PD-L1, an immune inhibitory ligand critical for immune tolerance to self and anti-tumor immunity (2,3). CMTM6 associates with PD-L1 at recycling endosomes, where it protects PD-L1 from being targeted for lysosomal degradation by preventing STUB1-mediated PD-L1 ubiquitination (2,3). CMTM6 may stabilize PD-L1 expression on antigen presenting cells and potentiate inhibitory signaling by PD-1 on T cells, triggering T cell inhibition and exhaustion. CMTM6 has also been shown to interact with with CD58, ARG1, ENO1, and TMPO (2). Due to the role of CMTM6 in regulating the immune system, it is being investigated as an immunotherapeutic target for the treatment of cancer.

PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur (1). For more information on PTMScan® Proteomics Services, please visit www.cellsignal.com/common/content/content.jsp?id=ptmscan-services.
$199
250 µl
Anti-mouse IgG (H+L), F(ab')2 Fragment was conjugated to phycoerythrin (PE) under optimal conditions. This F(ab')2 fragment product results in less non-specific binding, as it lacks the Fc domain that can bind to the cells with Fc receptors.
APPLICATIONS

Application Methods: Flow Cytometry

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: LAT, a transmembrane adaptor protein expressed in T, NK and mast cells, is an important mediator for T cell receptor (TCR) signaling (1). Upon TCR engagement, activated Zap-70 phosphorylates LAT at multiple conserved tyrosine residues within SH2 binding motifs, exposing these motifs as the docking sites for downstream signaling targets (2,3). The phosphorylation of LAT at Tyr171 and Tyr191 enables the binding of Grb2, Gads/SLP-76, PLCγ1 and PI3 kinase through their SH2 domain and translocates them to the membrane. This process eventually leads to activation of the corresponding signaling pathways (1-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Following protein synthesis, secretory, intra-organellar, and transmembrane proteins translocate into the endoplasmic reticulum (ER) where they are post-translationally modified and properly folded. The accumulation of unfolded proteins within the ER triggers an adaptive mechanism known as the unfolded protein response (UPR) that counteracts compromised protein folding (1). The transmembrane serine/threonine kinase IRE1, originally identified in Saccharomyces cerevisiae, is a proximal sensor for the UPR that transmits the unfolded protein signal across the ER membrane (2-4). The human homolog IRE1α was later identified and is ubiquitously expressed in human tissues (5). Upon activation of the unfolded protein response, IRE1α splices X-box binding protein 1 (XBP-1) mRNA through an unconventional mechanism using its endoribonuclease activity (6). This reaction converts XBP-1 from an unspliced XBP-1u isoform to the spliced XBP-1s isoform, which is a potent transcriptional activator that induces expression of many UPR responsive genes (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The Jak-Stat signaling pathway is utilized by a large number of cytokines, growth factors, and hormones (1). Receptor-mediated tyrosine phosphorylation of Jak family members triggers phosphorylation of Stat proteins, resulting in their nuclear translocation, binding to specific DNA elements, and subsequent activation of transcription. The remarkable range and specificity of responses regulated by the Stats is determined, in part, by the tissue-specific expression of different cytokine receptors, Jaks, and Stats, as well as by the combinatorial coupling of various Stat members to different receptors (2). Stat4 is predominantly expressed in the spleen, thymus, and testis and has been most extensively investigated as the mediator of IL-12 responses (3-8). Activation of Stat4 is associated with phosphorylation at Tyr693 (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: MGMT (O-6-methylguanine-DNA methyltransferase) is a DNA repair enzyme that participates in a suicide reaction that specifically removes methyl or alkyl groups from the O(6) position of guanine, restoring guanine to its normal form without causing DNA breaks (1). MGMT protects cells from alkylating toxins, and is an important factor in drug resistance to alkylating therapeutic agents (2,3). It is ubiquitously expressed in normal human tissues (4) and is overexpressed in many types of human tumors, but epigenetically silenced in other tumors. MGMT silencing is a marker associated with poor prognosis, but is a good predictive marker for response to alkylating agent chemotherapy (5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated CHOP (L63F7) Mouse mAb #2895.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: CHOP was identified as a C/EBP-homologous protein that inhibits C/EBP and LAP in a dominant-negative manner (1). CHOP expression is induced by certain cellular stresses including starvation and the induced CHOP suppresses cell cycle progression from G1 to S phase (2). Later it was shown that, during ER stress, the level of CHOP expression is elevated and CHOP functions to mediate programmed cell death (3). Studies also found that CHOP mediates the activation of GADD34 and Ero1-Lα expression during ER stress. GADD34 in turn dephosphorylates phospho-Ser51 of eIF2α thereby stimulating protein synthesis. Ero1-Lα promotes oxidative stress inside the endoplasmic reticulum (ER) (4). The role of CHOP in the programmed cell death of ER-stressed cells is correlated with its role promoting protein synthesis and oxidative stress inside the ER (4).

$260
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for direct immunofluorescent analysis in mouse cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated PD-1 (D7D5W) XP® Rabbit mAb (Mouse Specific) #84651.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry)

Background: The programmed cell death 1 protein (PD-1, PDCD1, CD279) is a member of the CD28 family of immunoreceptors that regulate T cell activation and immune responses (1-3). The PD-1 protein contains an extracellular Ig V domain, a transmembrane domain, and a cytoplasmic tail that includes an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM). PD-1 is activated by the cell surface ligands PD-L1 and PD-L2 (4). Upon activation, PD-1 ITIM and ITSM phosphorylation leads to the recruitment of the protein tyrosine phosphatases SHP-1 and SHP-2, which suppress TCR signaling (5-7). In addition to activated T-cells, PD-1 is expressed in activated B-cells and monocytes, although its function in these cell types has not been fully characterized (8). The PD-1 pathway plays an important role in immune tolerance (3); however, research studies show that cancer cells often adopt this pathway to escape immune surveillance (9). Consequently, blockade of PD-1 and its ligands is proving to be a sound strategy for neoplastic intervention (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Type 1 collagen is the most abundant collagen in many human tissues, including bone, skin, and tendons. It is a trimeric complex comprised of two molecules of COL1A1 (alpha-1 type 1 collagen) and one molecule of COL1A2 (alpha-2 type 1 collagen) (1-3). The expression levels of COL1A1 are regulated by multiple mechanisms, including mRNA stability, translation, and posttranslational modification (3-5). Overexpression of COL1A1 has been positively associated with tissue fibrosis disorders, including systemic sclerosis (6), while loss-of-function mutations in the COL1A1 gene are a major causative factor for osteogenesis imperfecta (brittle bone disease) (7). Notably, COL1A1 expression levels have also been associated with tumor development in gastric, lung, thyroid, and breast cancers. Research studies suggest that upregulation of COL1A1 can generate a modified extracellular matrix environment that promotes cancer cell survival, proliferation, metastasis, and invasion (8-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Members of the APOBEC3 subfamily of cytosine deaminases (APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H) function in innate immunity by preventing viral DNA replication, including that of HIV-1 (1-2). APOBEC3B mutation and aberrant expression in cancer is thought to result in mutation of genomic DNA, and to drive tumorigenesis. APOBEC3B is highly expressed in human breast cancer, glioma, and other human cancers (3-5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: IFN-γ plays key roles in both the innate and adaptive immune response. IFN-γ activates the cytotoxic activity of innate immune cells, such as macrophages and NK cells (1,2). IFN-γ production by NK cells and antigen presenting cells (APCs) promotes cell-mediated adaptive immunity by inducing IFN-γ production by T lymphocytes, increasing class I and class II MHC expression, and enhancing peptide antigen presentation (1). The anti-viral activity of IFN-γ is due to its induction of PKR and other regulatory proteins. Binding of IFN-γ to the IFNGR1/IFNGR2 complex promotes dimerization of the receptor complexes to form the (IFNGR1/IFNGR2)2 -IFN-γ dimer. Binding induces a conformational change in receptor intracellular domains and signaling involves Jak1, Jak2, and Stat1 (3). The critical role of IFN-γ in amplification of immune surveillance and function is supported by increased susceptibility to pathogen infection by IFN-γ or IFNGR knockout mice and in humans with inactivating mutations in IFNGR1 or IFNGR2. IFN-γ also appears to have a role in atherosclerosis (4).