Interested in promotions? | Click here >>

Product listing: E-Tag (D1U2Q) Rabbit mAb #41729 to RIP (D94C12) XP® Rabbit mAb (Biotinylated), UniProt ID Q13546 #45726

$260
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Immunoprecipitation, Western Blotting

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Mitochondrial pyrroline-5-carboxylate reductase 1 (PYCR1) catalyzes the last step in proline biosynthesis (1). Research studies show that proline is a limiting amino acid to clear cell renal cell carcinoma (ccRCC). PYCR1 expression is induced in kidney cancer cells to compensate for the proline shortage and maintain cancer cell growth. Furthermore, PYCR1 knockdown inhibits ccRCC cell proliferation in the absence of proline, suggesting this enzyme as a potential cancer therapeutic target (2). In addition, breast cancer cells also express high levels of PYCR1 (2,3). Proline is restrictive to invasive ductal breast carcinoma cells, indicating proline vulnerability in the breast cancer formation (2).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Aquaporins (AQP) are integral membrane proteins that serve as channels in the transfer of water and small solutes across the membrane. There are 13 isoforms of AQP that express in different types of cells and tissues (1,2). AQP1 is found in blood vessels, kidney, eye, and ear. AQP2 is found in the kidney, and it has been shown that the lack of AQP2 results in diabetes (1,3). AQP4 is present in the brain, where it is enriched in astrocytes (1,2,4). AQP5 is found in the salivary and lacrimal gland, AQP6 in intracellular vesicles in the kidney, AQP7 in adipocytes, AQP8 in kidney, testis, and liver, AQP9 is present in liver and leukocytes and AQP10-11 in the intestine (1,3,4). AQPs are essential for the function of cells and organs. It has been shown that AQP1 and AQP4 regulate the water homeostasis in astrocytes, preventing cerebral edema caused by solute imbalance (5). Several studies have shown the involvement of AQPs in the development of inflammatory processes, including cells of innate and adaptive immunity (6,7).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells transfected with Myc-tagged protein.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct immunofluoroscent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated IRF-3 (D9J5Q) Mouse mAb #10949.
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Interferon regulatory factors (IRFs) comprise a family of transcription factors that function within the Jak/Stat pathway to regulate interferon (IFN) and IFN-inducible gene expression in response to viral infection (1). IRFs play an important role in pathogen defense, autoimmunity, lymphocyte development, cell growth, and susceptibility to transformation. The IRF family includes nine members: IRF-1, IRF-2, IRF-9/ISGF3γ, IRF-3, IRF-4 (Pip/LSIRF/ICSAT), IRF-5, IRF-6, IRF-7, and IRF-8/ICSBP. All IRF proteins share homology in their amino-terminal DNA-binding domains. IRF family members regulate transcription through interactions with proteins that share similar DNA-binding motifs, such as IFN-stimulated response elements (ISRE), IFN consensus sequences (ICS), and IFN regulatory elements (IRF-E) (2).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Western Blotting

Background: Intercellular cell adhesion molecule-1 (CD54 or ICAM-1) is a cell surface glycoprotein that belongs to the immunoglobulin superfamily (IgSF) of adhesion molecules. CD54 is expressed at low levels in diverse cell types, and is induced by cytokines (TNF-α, interleukin-1) and bacterial lipopolysaccharide (1). Apical localization of CD54 on endothelial cells (or basolateral localization on epithelial cells) is a prerequisite for leukocyte trafficking through the endothelial (or epithelial) barrier (1). Apical expression of CD54 on epithelial cells mediates pathogen invasion as well as host defense, a pattern also observed in tumors (1). CD54 also functions as a co-stimulator on antigen presenting cells, binding to its receptor LFA-1 (leukocyte function-associated antigen-1) on the surface of T cells during antigen presentation (2). Cross-linking of CD54 or binding to its ligand triggers activation of Src family kinases and the Rho/ROCK pathway (3-7). Phosphorylation on Tyr485 of CD54 is required for its association with SHP-2 (5). SHP-2 seems essential for CD54-induced Src activation (7).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: HLA-G (HLA-G histocompatibility antigen, class I, G) is a non-classical MHC molecule expressed by trophoblasts in placenta, thymic epithelial cells, and some tumors. Alternative splicing leads to generation of at least six isoforms, four that are transmembrane proteins and two that are soluble (1-4). It is an inhibitory molecule involved in immune tolerance and escape, originally studied for its role in maternal tolerance of the fetus during pregnancy (1-5). HLA-G binds ILT2, ILT4, and KIR2DL4, playing a role in the regulation of natural killer, T, and monocyte/macrophage cells (4-5). Its involvement in evasion of immune response makes it a potential target for immunotherapy (6).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 555 fluorescent dye and tested in-house for immunofluorescent and flow cytometric analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Acetyl-Histone H3 (Lys27) (D5E4) XP® Rabbit mAb #8173.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$289
100 µg
This Cell Signaling Technology antibody is conjugated to PE-Cy7® and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: CD80 (B7-1, BB1) and CD86 (B7-2, B70) are members of the B7 family of cell surface ligands that regulate T cell activation and immune responses. CD80 is expressed on activated antigen presenting cells, including dendritic cells, B cells, monocytes, and macrophages. CD86 is expressed on resting monocytes, dendritic cells, activated B lymphocytes, and can be further upregulated in the presence of inflammation (1-3). CD80 and CD86 are ligands for CD28, which functions as a T cell costimulatory receptor. Interaction of CD28 with CD80 or CD86 provides the second signal required for naïve T cell activation, T cell proliferation, and acquisition of effector functions (3-7). Alternatively, CD80 and CD86 also act as ligands to CTLA-4, which results in the downregulation of T cell activity (3,7-9).

$179
100 µg
This Cell Signaling Technology antibody is conjugated to PE-Cy5® and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: The protein phosphatase (PTP) receptor CD45 is a type I transmembrane protein comprised of a pair of intracellular tyrosine phosphatase domains and a variable extracellular domain generated by alternative splicing (1). The catalytic activity of CD45 is a function of the first phosphatase domain (D1) while the second phosphatase domain (D2) may interact with and stabilize the first domain, or recruit/bind substrates (2,3). CD45 interacts directly with antigen receptor complex proteins or activates Src family kinases involved in the regulation of T- and B-cell antigen receptor signaling (1). Specifically, CD45 dephosphorylates Src-family kinases Lck and Fyn at their conserved negative regulatory carboxy-terminal tyrosine residues and upregulates kinase activity. Conversely, studies indicate that CD45 can also inhibit Lck and Fyn by dephosphorylating their positive regulatory autophosphorylation site. CD45 appears to be both a positive and a negative regulator that conducts signals depending on specific stimuli and cell type (1). Human leukocytes including lymphocytes, eosinophils, monocytes, basophils, and neutrophils express CD45, while erythrocytes and platelets are negative for CD45 expression (4).

$209
100 µg
This Cell Signaling Technology antibody is conjugated to PerCP-Cy5.5® and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: The protein phosphatase (PTP) receptor CD45 is a type I transmembrane protein comprised of a pair of intracellular tyrosine phosphatase domains and a variable extracellular domain generated by alternative splicing (1). The catalytic activity of CD45 is a function of the first phosphatase domain (D1) while the second phosphatase domain (D2) may interact with and stabilize the first domain, or recruit/bind substrates (2,3). CD45 interacts directly with antigen receptor complex proteins or activates Src family kinases involved in the regulation of T- and B-cell antigen receptor signaling (1). Specifically, CD45 dephosphorylates Src-family kinases Lck and Fyn at their conserved negative regulatory carboxy-terminal tyrosine residues and upregulates kinase activity. Conversely, studies indicate that CD45 can also inhibit Lck and Fyn by dephosphorylating their positive regulatory autophosphorylation site. CD45 appears to be both a positive and a negative regulator that conducts signals depending on specific stimuli and cell type (1). Human leukocytes including lymphocytes, eosinophils, monocytes, basophils, and neutrophils express CD45, while erythrocytes and platelets are negative for CD45 expression (4).

$275
100 µg
This Cell Signaling Technology antibody is conjugated to APC-Cy7® and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: L-selectin (CD62L, MEL-14, LAM1, SELL) is a cell adhesion molecule, responsible for homing and mediating the binding of lymphocytes to high endothelial venules (HEV) in secondary lymphoid tissues (1-5). It is a commonly used marker for distinguishing naive and memory T cells from effector T cells (6).

$219
100 µg
This Cell Signaling Technology antibody is conjugated to redFluor™ 710 and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: CD161/KLRB1 (Killer cell lectin-like receptor subfamily B member 1, also known as CLEC5B and NKR-P1A) is a type II transmembrane protein that is expressed on the majority of Natural Killer (NK) cells, NK T cells, and some T lymphocytes (1). CD161/KLRB1 is also expressed on Th17 cells, promotes their generation, and modulates their function (2). Engagement with its ligand lectin-like transcript 1 (LLT1) inhibits NK cell function, while LLT1 and CD161/KLRB1 interaction in the presence of a TCR signal enhances IFN-gamma production by T cells (3,4). There are several different CD161 isoforms in rodents and some function as activating receptors as well (5,6).

$499
96 assays
1 Kit
The FastScan™ Total c-Jun ELISA Kit is a sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of c-Jun. To perform the assay, sample is incubated with a capture antibody conjugated with a proprietary tag and a second detection antibody linked to HRP, forming a sandwich with c-Jun in solution. This entire complex is immobilized to the plate via an anti-tag antibody. The wells are then washed to remove unbound material. TMB is then added. The magnitude of observed signal is proportional to the quantity of c-Jun. Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Monkey, Mouse, Rat

Background: c-Jun is a member of the Jun family containing c-Jun, JunB, and JunD, and is a component of the transcription factor activator protein-1 (AP-1). AP-1 is composed of dimers of Fos, Jun, and ATF family members and binds to and activates transcription at TRE/AP-1 elements (reviewed in 1). Extracellular signals including growth factors, chemokines, and stress activate AP-1-dependent transcription. The transcriptional activity of c-Jun is regulated by phosphorylation at Ser63 and Ser73 through SAPK/JNK (reviewed in 2). Knock-out studies in mice have shown that c-Jun is essential for embryogenesis (3), and subsequent studies have demonstrated roles for c-Jun in various tissues and developmental processes including axon regeneration (4), liver regeneration (5), and T cell development (6). AP-1 regulated genes exert diverse biological functions including cell proliferation, differentiation, and apoptosis, as well as transformation, invasion and metastasis, depending on cell type and context (7-9). Other target genes regulate survival, as well as hypoxia and angiogenesis (8,10). Research studies have implicated c-Jun as a promising therapeutic target for cancer, vascular remodeling, acute inflammation, and rheumatoid arthritis (11,12).

$199
100 µg
This Cell Signaling Technology antibody is conjugated to PE-Cy7® and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: CD27 (TNFRSF7) is a transmemebrane protein of the TNF receptor superfamily (TNFRSF). It is mainly expressed on lymphoid cells (also on early hematopoietic precursor cells in mice) (1,2). CD27 is considered a phenotypic marker for memory B cells and is also used to identify B regulatory (Breg) cells (3,4). It is constitutively expressed on naïve CD4 and CD8 T cells and its expression is further upregulated upon T cell activation. CD27 is one of the two most important co-stimulatory receptors for T cell priming (the other one is CD28). While CD28 co-stimulatory signal mainly triggers cell proliferation, CD27 co-stimulatory signal primarily promotes cell survival and differentiation (5,6). Upon binding to its ligand CD70, CD27 activates the NF-κB and JNK signaling pathways through TNFR associated factors (TRAFs), the adaptor molecules that are associated with CD27 cytoplasmic tail domain. Upon activation CD27 is shed from cell surface and soluble CD27 is used as a marker of T cell activation (7,8).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated YAP/TAZ (D24E4) Rabbit mAb #8418.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: YAP (Yes-associated protein, YAP65) was identified based on its ability to associate with the SH3 domain of Yes. It also binds to other SH3 domain-containing proteins such as Nck, Crk, Src, and Abl (1). In addition to the SH3 binding motif, YAP contains a PDZ interaction motif, a coiled-coil domain, and WW domains (2-4). While initial studies of YAP all pointed towards a role in anchoring and targeting to specific subcellular compartments, subsequent studies showed that YAP is a transcriptional co-activator by virtue of its WW domain interacting with the PY motif (PPxY) of the transcription factor PEBP2 and other transcription factors (5). In its capacity as a transcriptional co-activator, YAP is now widely recognized as a central mediator of the Hippo Pathway, which plays a fundamental and widely conserved role in regulating tissue growth and organ size. Phosphorylation at multiple sites (e.g., Ser109, Ser127) by LATS kinases promotes YAP translocation from the nucleus to the cytoplasm, where it is sequestered through association with 14-3-3 proteins (6-8). These LATS-driven phosphorylation events serve to prime YAP for subsequent phosphorylation by CK1δ/ε in an adjacent phosphodegron, triggering proteosomal degradation of YAP (9).

$135
100 µg
This Cell Signaling Technology antibody is conjugated to FITC and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: CD161/KLRB1 (Killer cell lectin-like receptor subfamily B member 1, also known as CLEC5B and NKR-P1A) is a type II transmembrane protein that is expressed on the majority of Natural Killer (NK) cells, NK T cells, and some T lymphocytes (1). CD161/KLRB1 is also expressed on Th17 cells, promotes their generation, and modulates their function (2). Engagement with its ligand lectin-like transcript 1 (LLT1) inhibits NK cell function, while LLT1 and CD161/KLRB1 interaction in the presence of a TCR signal enhances IFN-gamma production by T cells (3,4). There are several different CD161 isoforms in rodents and some function as activating receptors as well (5,6).

$219
100 µg
This Cell Signaling Technology antibody is conjugated to APC-Cy7® and tested in-house for direct flow cytometric analysis in human cells.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: The protein phosphatase (PTP) receptor CD45 is a type I transmembrane protein comprised of a pair of intracellular tyrosine phosphatase domains and a variable extracellular domain generated by alternative splicing (1). The catalytic activity of CD45 is a function of the first phosphatase domain (D1) while the second phosphatase domain (D2) may interact with and stabilize the first domain, or recruit/bind substrates (2,3). CD45 interacts directly with antigen receptor complex proteins or activates Src family kinases involved in the regulation of T- and B-cell antigen receptor signaling (1). Specifically, CD45 dephosphorylates Src-family kinases Lck and Fyn at their conserved negative regulatory carboxy-terminal tyrosine residues and upregulates kinase activity. Conversely, studies indicate that CD45 can also inhibit Lck and Fyn by dephosphorylating their positive regulatory autophosphorylation site. CD45 appears to be both a positive and a negative regulator that conducts signals depending on specific stimuli and cell type (1). Human leukocytes including lymphocytes, eosinophils, monocytes, basophils, and neutrophils express CD45, while erythrocytes and platelets are negative for CD45 expression (4).

$499
96 assays
1 Kit
The FastScan™ Phospho-c-Jun (Ser63) ELISA Kit is a sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of c-Jun when phosphorylated at Ser63. To perform the assay, sample is incubated with a capture antibody conjugated with a proprietary tag and a second detection antibody linked to HRP, forming a sandwich with phospho-c-Jun (Ser63) in solution. This entire complex is immobilized to the plate via an anti-tag antibody. The wells are then washed to remove unbound material. TMB is then added. The magnitude of observed signal is proportional to the quantity of phospho-c-Jun (Ser63). Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse, Rat

Background: c-Jun is a member of the Jun family containing c-Jun, JunB, and JunD, and is a component of the transcription factor activator protein-1 (AP-1). AP-1 is composed of dimers of Fos, Jun, and ATF family members and binds to and activates transcription at TRE/AP-1 elements (reviewed in 1). Extracellular signals including growth factors, chemokines, and stress activate AP-1-dependent transcription. The transcriptional activity of c-Jun is regulated by phosphorylation at Ser63 and Ser73 through SAPK/JNK (reviewed in 2). Knock-out studies in mice have shown that c-Jun is essential for embryogenesis (3), and subsequent studies have demonstrated roles for c-Jun in various tissues and developmental processes including axon regeneration (4), liver regeneration (5), and T cell development (6). AP-1 regulated genes exert diverse biological functions including cell proliferation, differentiation, and apoptosis, as well as transformation, invasion and metastasis, depending on cell type and context (7-9). Other target genes regulate survival, as well as hypoxia and angiogenesis (8,10). Research studies have implicated c-Jun as a promising therapeutic target for cancer, vascular remodeling, acute inflammation, and rheumatoid arthritis (11,12).

$170
100 µg
This Cell Signaling Technology antibody is conjugated to PE and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: L-selectin (CD62L, MEL-14, LAM1, SELL) is a cell adhesion molecule, responsible for homing and mediating the binding of lymphocytes to high endothelial venules (HEV) in secondary lymphoid tissues (1-5). It is a commonly used marker for distinguishing naive and memory T cells from effector T cells (6).

$69
100 µg
This Cell Signaling Technology antibody is conjugated to FITC and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: The protein phosphatase (PTP) receptor CD45 is a type I transmembrane protein comprised of a pair of intracellular tyrosine phosphatase domains and a variable extracellular domain generated by alternative splicing (1). The catalytic activity of CD45 is a function of the first phosphatase domain (D1) while the second phosphatase domain (D2) may interact with and stabilize the first domain, or recruit/bind substrates (2,3). CD45 interacts directly with antigen receptor complex proteins or activates Src family kinases involved in the regulation of T- and B-cell antigen receptor signaling (1). Specifically, CD45 dephosphorylates Src-family kinases Lck and Fyn at their conserved negative regulatory carboxy-terminal tyrosine residues and upregulates kinase activity. Conversely, studies indicate that CD45 can also inhibit Lck and Fyn by dephosphorylating their positive regulatory autophosphorylation site. CD45 appears to be both a positive and a negative regulator that conducts signals depending on specific stimuli and cell type (1). Human leukocytes including lymphocytes, eosinophils, monocytes, basophils, and neutrophils express CD45, while erythrocytes and platelets are negative for CD45 expression (4).

$499
96 assays
1 Kit
The FastScan™ Total LC3B ELISA Kit is a sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of LC3B. To perform the assay, sample is incubated with a capture antibody conjugated with a proprietary tag and a second detection antibody linked to HRP, forming a sandwich with LC3B in solution. This entire complex is immobilized to the plate via an anti-tag antibody. The wells are then washed to remove unbound material. TMB is then added. The magnitude of observed signal is proportional to the quantity of LC3B. Antibodies in kit are custom formulations specific to kit.IMPORTANT: This FastScan™ ELISA Kit requires 4 washes at Step 6 of the protocol.
REACTIVITY
Human, Monkey, Mouse, Rat

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation, but it has also been associated with a number of physiological processes including development, differentiation, neurodegenerative diseases, infection, and cancer (3). Autophagy marker Light Chain 3 (LC3) was originally identified as a subunit of microtubule-associated proteins 1A and 1B (termed MAP1LC3) (4) and subsequently found to contain similarity to the yeast protein Apg8/Aut7/Cvt5 critical for autophagy (5). Three human LC3 isoforms (LC3A, LC3B, and LC3C) undergo post-translational modifications during autophagy (6-9). Cleavage of LC3 at the carboxy terminus immediately following synthesis yields the cytosolic LC3-I form. During autophagy, LC3-I is converted to LC3-II through lipidation by a ubiquitin-like system involving Atg7 and Atg3 that allows for LC3 to become associated with autophagic vesicles (6-10). The presence of LC3 in autophagosomes and the conversion of LC3 to the lower migrating form, LC3-II, have been used as indicators of autophagy (11).

$259
100 µg
This Cell Signaling Technology antibody is conjugated to APC and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: CD161/KLRB1 (Killer cell lectin-like receptor subfamily B member 1, also known as CLEC5B and NKR-P1A) is a type II transmembrane protein that is expressed on the majority of Natural Killer (NK) cells, NK T cells, and some T lymphocytes (1). CD161/KLRB1 is also expressed on Th17 cells, promotes their generation, and modulates their function (2). Engagement with its ligand lectin-like transcript 1 (LLT1) inhibits NK cell function, while LLT1 and CD161/KLRB1 interaction in the presence of a TCR signal enhances IFN-gamma production by T cells (3,4). There are several different CD161 isoforms in rodents and some function as activating receptors as well (5,6).

$249
100 µg
This Cell Signaling Technology antibody is conjugated to APC and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells transfected with Myc-tagged protein.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Monocyte chemotactic protein-1 (MCP-1), also known as CCL2, monocyte chemotactic activating factor (MCAF) or glioma-derived chemotactic factor-2 (GDCF-2), is the product of the human JE gene and a member of the family of C-C (or β) chemokines (1-4). The predicted molecular weight of MCP-1 protein is 11-13 kDa, but it may migrate at 20-30 kDa due to glycosylation. MCP-1 is secreted by a variety of cell types in response to pro-inflammatory stimuli and was originally described for its chemotactic activity on monocytes. This activity has led to studies demonstrating its role in diseases characterized by monocyte infiltrates such as psoriasis (5), rheumatoid arthritis (6) and atherosclerosis (7). MCP-1 may also contribute to tumor progression and angiogenesis (8). Signaling by MCP-1 is mediated by the G-protein coupled receptor CCR2 (9).

$249
100 µg
This Cell Signaling Technology antibody is conjugated to PerCP-Cy5.5® and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$149
100 µg
This Cell Signaling Technology antibody is conjugated to PE and tested in-house for direct flow cytometric analysis in mouse cells.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: CD161/KLRB1 (Killer cell lectin-like receptor subfamily B member 1, also known as CLEC5B and NKR-P1A) is a type II transmembrane protein that is expressed on the majority of Natural Killer (NK) cells, NK T cells, and some T lymphocytes (1). CD161/KLRB1 is also expressed on Th17 cells, promotes their generation, and modulates their function (2). Engagement with its ligand lectin-like transcript 1 (LLT1) inhibits NK cell function, while LLT1 and CD161/KLRB1 interaction in the presence of a TCR signal enhances IFN-gamma production by T cells (3,4). There are several different CD161 isoforms in rodents and some function as activating receptors as well (5,6).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated RIP (D94C12) XP® Rabbit mAb #3493.
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The receptor-interacting protein (RIP) family of serine-threonine kinases (RIP, RIP2, RIP3, and RIP4) are important regulators of cellular stress that trigger pro-survival and inflammatory responses through the activation of NF-κB, as well as pro-apoptotic pathways (1). In addition to the kinase domain, RIP contains a death domain responsible for interaction with the death domain receptor Fas and recruitment to TNF-R1 through interaction with TRADD (2,3). RIP-deficient cells show a failure in TNF-mediated NF-κB activation, making the cells more sensitive to apoptosis (4,5). RIP also interacts with TNF-receptor-associated factors (TRAFs) and can recruit IKKs to the TNF-R1 signaling complex via interaction with NEMO, leading to IκB phosphorylation and degradation (6,7). Overexpression of RIP induces both NF-κB activation and apoptosis (2,3). Caspase-8-dependent cleavage of the RIP death domain can trigger the apoptotic activity of RIP (8).