Microsize antibodies for $99 | Learn More >>

Product listing: Phospho-ALK (Tyr1278) (D59G10) Rabbit mAb, UniProt ID Q9UM73 #6941 to IFN-β1 (D1D7G) Rabbit mAb, UniProt ID P01574 #73671

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor for pleiotrophin (PTN), a growth factor involved in embryonic brain development (1-3). In ALK-expressing cells, PTN induces phosphorylation of both ALK and the downstream effectors IRS-1, Shc, PLCγ, and PI3 kinase (1). ALK was originally discovered as a nucleophosmin (NPM)-ALK fusion protein produced by a translocation (4). Investigators have found that the NPM-ALK fusion protein is a constitutively active, oncogenic tyrosine kinase associated with anaplastic lymphoma (4). Research literature suggests that activation of PLCγ by NPM-ALK may be a crucial step for its mitogenic activity and involved in the pathogenesis of anaplastic lymphomas (5).A distinct ALK oncogenic fusion protein involving ALK and echinoderm microtubule-associated protein like 4 (EML4) has been described in the research literature from a non-small cell lung cancer (NSCLC) cell line, with corresponding fusion transcripts present in some cases of lung adenocarcinoma. The short, amino-terminal region of the microtubule-associated protein EML4 is fused to the kinase domain of ALK (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: CDK-activating kinase (CAK) is a complex of CDK7 and cyclin H. The complex is involved in cell cycle regulation by phosphorylating an activating residue in the T-loop domain of cdks (1). Regulation of CAK activity is mediated by T-loop phosphorylation and by association with MAT1, both of which enhance its kinase activity toward the CTD of RNA polymerase II (2,3) and other substrates such as p53 (4). CAK is an essential component of the transcription complex TFIIH and may interact directly with TFIIH helicases (5).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Translation initiation requires a set of factors to facilitate the association of the 40S ribosomal subunit with mRNA. The eIF4F complex, consisting of eIF4E, eIF4A, and eIF4G, binds to the 5' cap structure of mRNA. eIF4F and eIF4B unwind the secondary structure of mRNA at its 5' untranslated region. The 40S ribosomal subunit, along with some initiation factors including eIF3, then binds to the 5' mRNA cap and searches along the mRNA for the initiation codon. eIF3 is a large translation initiation complex with 10 to 13 different subunits. eIF3A, eIF3B, eIF3C, eIF3E, eIF3F, and eIF3H are the core subunits critical for the function of this complex. eIF3 physically interacts with eIF4G, which may be responsible for the association of the 40S ribosomal subunit with mRNA (1). eIF3 also stabilizes the binding of Met-tRNAf.eIF2.GTP to the 40S ribosomal subunit and helps keep the integrity of the resulting complex upon addition of the 60S ribosomal subunit (2). Studies have shown that mTOR interacts with eIF3 directly (3,4). When cells are stimulated by hormones or mitogenic signals, mTOR binds to the eIF3 complex and phosphorylates S6K1 (3). This process results in the dissociation of S6K1 from eIF3 and S6K1 activation. The activated S6K1 then phosphorylates its downstream targets including ribosomal protein S6 and eIF4B, resulting in stimulation of translation. Further findings demonstrated that activated mTOR signaling induces the association of eIF3 with eIF4G upon stimulation with insulin (3).

The PDGF Receptor Activation Antibody Sampler Kit provides an economical means to evaluate the activation status of multiple members of the PDGF receptor pathway, including SHP-2, Akt, and p44/42 MAPK (Erk1/2). The kit includes enough antibody to perform two western blot experiments per primary antibody.
$134
20 µl
$336
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Emerin is a broadly expressed integral protein of the nuclear inner membrane (1). It contains a LEM domain and binds to several nuclear proteins, such as BAF (barrier-to-autointegration factor) and A- and B-type lamins, which are important in nuclear functions (2-5). Emerin may regulate gene expression through binding to other transcriptional regulators (6,7). Emerin binds to β-catenin and inhibits its nuclear accumulation (8). Recent studies demonstrate that emerin is required for HIV-1 infectivity (9). Mutations in the gene encoding emerin (EMD) are a major cause of Emery-Dreifuss muscular dystrophy (EDMD), a disorder characterized by progressive skeletal muscle weakening (10).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Plant homeodomain (PHD) finger protein 2 (PHF2) is a putative transcription factor. PHF2 contains a zinc finger-like PHD domain that is distinct from other classes of zinc finger motifs and is often found in proteins that influence chromatin structure (1). It also contains a Jumonji C (JmjC) domain, which may play a role in histone demethylation (2). The PHF2 gene is ubiquitously expressed in adult mouse tissues; however, the majority of PHF2 expression in the mouse embryo occurs in the neural tube and root ganglia (1). PHF2 mutations have been associated with both early- and late-onset breast carcinoma (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Telomeres, the linear ends of chromosomes, are organized into T-loops to prevent them from being recognized by the cell as DNA double stranded breaks (DSBs) (1). The telomeric repeat binding factor proteins TRF1 and TRF2 bind to double-stranded telomeres to allow formation of T-loops (2). A large number of proteins involved in the DNA damage response are found physically associated with TRF2 within telomeres (3). Interestingly, TRF2 can transiently localize to DNA damage-induced DSBs, but overexpression of TRF2 prevents ATM-dependent signaling (4). Phosphorylation of TRF2 at Ser323 has been reported in vivo, but no upstream kinase or role has been established for this phosphorylation site (5).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Androgen Receptor (D6F11) XP® Rabbit mAb #5153.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Androgen receptor (AR), a zinc finger transcription factor belonging to the nuclear receptor superfamily, is activated by phosphorylation and dimerization upon ligand binding (1). This promotes nuclear localization and binding of AR to androgen response elements in androgen target genes. Research studies have shown that AR plays a crucial role in several stages of male development and the progression of prostate cancer (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Voltage-dependent anion channel (VDAC), ubiquitously expressed and located in the outer mitochondrial membrane, is generally thought to be the primary means by which metabolites diffuse in and out of the mitochondria (1). In addition, this channel plays a role in apoptotic signaling. The change in mitochondrial permeability characteristic of apoptosis is mediated by Bcl-2 family proteins, which bind to VDAC, altering the channel kinetics (2). Homodimerization of VDAC may be a mechanism for changing mitochondrial permeability and supporting release of cytochrome c (3). In mammalian cells, there are three VDAC isoforms, VDAC1, which is the most widely expressed isoform, as well as VDAC2 and VDAC3 (4,5).

The Autophagy Atg8 Family Antibody Sampler Kit provides an economical means of detecting each of the Atg8 family members. The kit contains enough primary antibody to perform at least two western blot experiments.

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation, but it has also been associated with a number of physiological processes, including development, differentiation, neurodegenerative diseases, infection, and cancer (3).Atg8 is a ubiquitin-like protein that is critical for autophagosome formation. Atg8 is synthesized as a precursor protein that is processed by the cysteine protease Atg4, followed by lipidation with phosphatidylethanolamine (PE) in a ubiqutin-like conjugation pathway involving Atg7 and Atg3 (4). This processing of Atg8, which is described as a conversion from type-I to type-II forms, is frequently described as a marker for autophagy. The type-II form of Atg8 is incorporated into maturing autophagosomes and leads to the recruitment of additional autophagy components, including cargo receptors like SQSTM1/p62. While yeast has a single Atg8 gene, many eukaryotes have at least six orthologs, including three microtubule-associated protein 1 light chain 3 (MAP1LC3/LC3) family members (LC3A, LC3B, and LC3C) and three GABAA receptor associated protein (GABARAP) family members (GABARAP, GABARAPL1/GEC1, and GABARAPL2/GATE-16). While highly conserved, these various family members can have important differences in their post-translational processing, expression profile, and protein interactions including distinct cargo receptor. This complexity within the Atg8 family is critical for selective mechanisms of autophagy that have been reported (5, 6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The Ikaros family of zinc-finger DNA-binding proteins belongs to the Kruppel transcription factor superfamily. Ikaros proteins are characterized by the presence of an amino-terminal zinc finger DNA-binding domain and a carboxy-terminal dimerization domain. Members of the Ikaros family include Ikaros, Aiolos, Helios, EOS, and Pegasus (1). All family members can form homodimers and heterodimers with other members of the Ikaros family. Most also contain multiple isoforms that are generated as a result of differential splicing, with some isoforms behaving in a dominant negative manner upon dimerization (2).Ikaros (IKZF1, LYF1) is the prototypical Ikaros family zinc-finger transcription factor and is expressed abundantly in lymphoid cells. Genetic studies in mice demonstrate that Ikaros is a tumor suppressor that is important for the normal development of B, T, natural killer, and dendritic cells (3,4). Additional studies show that imbalanced expression of different Ikaros isoforms, as well as mutations in the corresponding IKAROS gene, can be associated with a number of hematologic malignancies in humans (2,5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The mediator complex consists of about 25-30 proteins and is thought to facilitate transcription activation by acting as a molecular bridge between the RNA polymerase II (RNAPII) machinery and transcription factors (1). Mediator is recruited to target genes by transcription factors and plays an essential role in the recruitment and stabilization of the RNAPII transcription complex at promoters, as well as the activation of transcription post RNAPII recruitment (1-5). The mediator complex also plays an important role in creating ‘chromatin loops’ that occur as a result of interactions between the transcription factor bound at distal enhancers and RNAPII bound at the proximal promoter, and works to sustain proper chromatin architecture during active transcription (6-8).

$489
96 assays
1 Kit
The PathScan® Phospho-eNOS (Ser1177) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of eNOS when phosphorylated at Ser1177. A phospho-eNOS (Ser1177) rabbit monoclonal antibody has been coated onto the microwells. After incubation with cell lysates, phospho-eNOS protein is captured by the coated antibody. Following extensive washing, an eNOS mouse monoclonal detection antibody is added to detect captured eNOS protein phosphorylated at Ser1177. HRP-linked streptavidin is then used to recognize the bound detection antibody. HRP substrate,TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of eNOS phosphorylated at Ser1177.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Bovine

Background: Endothelial nitric-oxide synthase (eNOS) is an important enzyme in the cardiovascular system. It catalyzes the production of nitric oxide (NO), a key regulator of blood pressure, vascular remodeling, and angiogenesis (1,2). The activity of eNOS is regulated by phosphorylation at multiple sites. The two most thoroughly studied sites are the activation site Ser1177 and the inhibitory site Thr495 (3). Several protein kinases including Akt/PKB, PKA, and AMPK activate eNOS by phosphorylating Ser1177 in response to various stimuli (4,5). In contrast, bradykinin and H2O2 activate eNOS activity by promoting both Ser1177 phosphorylation and Thr495 dephosphorylation (6,7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: HSP70 and HSP90 are molecular chaperones expressed constitutively under normal conditions to maintain protein homeostasis and are induced upon environmental stress (1). Both HSP70 and HSP90 are able to interact with unfolded proteins to prevent irreversible aggregation and catalyze the refolding of their substrates in an ATP- and co-chaperone-dependent manner (1). HSP70 has a broad range of substrates including newly synthesized and denatured proteins, while HSP90 tends to have a more limited subset of substrates, most of which are signaling molecules. HSP70 and HSP90 often function collaboratively in a multi-chaperone system, which requires a minimal set of co-chaperones: HSP40, Hop, and p23 (2,3). The co-chaperones either regulate the intrinsic ATPase activity of the chaperones or recruit chaperones to specific substrates or subcellular compartments (1,4). When the ubiquitin ligase CHIP associates with the HSP70/HSP90 complex as a cofactor, the unfolded substrates are subjected to degradation by the proteasome (4). The biological functions of HSP70/HSP90 extend beyond their chaperone activity. They are essential for the maturation and inactivation of nuclear hormones and other signaling molecules (1,3). They also play a role in vesicle formation and protein trafficking (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Modulation of chromatin structure plays a critical role in the regulation of transcription and replication of the eukaryotic genome. The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. In addition to the growing number of post-translational histone modifications regulating chromatin structure, cells can also exchange canonical histones with variant histones that can directly or indirectly modulate chromatin structure (1). CENP-A, also known as the chromatin-associated protein CSE4 (capping-enzyme suppressor 4-p), is an essential histone H3 variant that replaces canonical histone H3 in centromeric heterochromatin (2). The greatest divergence between CENP-A and canonical histone H3 occurs in the amino-terminal tail of the protein, which binds linker DNA between nucleosomes and facilitates proper folding of centromeric heterochromatin (3). The amino-terminal tail of CENP-A is also required for recruitment of other centromeric proteins (CENP-C, hSMC1, hZW10), proper kinetochore assembly and chromosome segregation during mitosis (4). Additional sequence divergence in the histone fold domain is responsible for correct targeting of CENP-A to the centromere (5). Many of the functions of CENP-A are regulated by phosphorylation (6,7). Aurora A-dependent phosphorylation of CENP-A on Ser7 during prophase is required for proper targeting of Aurora B to the inner centromere in prometaphase, proper kinetochore/microtubule attachment and proper alignment of chromosomes during mitosis (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Iron regulatory proteins (IRPs; also known as IREBs) are RNA-binding proteins that recognize iron-responsive elements (IREs) and play an important role in maintaining iron homeostasis in mammalian cells. IREs are conserved cis-regulatory hairpin structures located within the 5’ or 3’ untranslated regions (UTRs) of target mRNAs. IRPs inhibit translation when bound to IREs within the 5’ UTR of mRNA encoding for proteins involved in iron storage, export, and utilization. IRP binding to multiple IREs within the 3’ UTR of transferin receptor 1 (TFR1) mRNA prevents its degradation, thereby augmenting translation of TFR1 and increasing iron uptake into cells (1-3). Dysregulation of IRPs has been associated with human cancers (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Lipin 1 was identified as a nuclear protein required for adipose tissue development (1). The expression of Lipin 1 is induced during adipocyte differentiation (1). The abnormal development of adipose tissues caused by mutations in the lipin 1 gene results in lipodystrophy, a condition associated with low body fat, fatty liver, hypertriglyceridemia, and insulin resistance (1). Lipin 1 plays a role in lipid metabolism in various tissues and cell types including liver, muscle, adipose tissues, and neuronal cell lines (2-4). It has dual functions at the molecular level: Lipin 1 serves as a transcriptional coactivator in liver, and a phosphatidate phosphatase in triglyceride and phospholipid biosynthesis pathways (5). Lipin 1 is regulated by mTOR, illustrating a connection between adipocyte development and nutrient-sensing pathways (6). It also mediates hepatic insulin signaling by TORC2/CRTC2 (7).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct immunofluorescent analysis in rat cells and flow cytometry in human and mouse cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Insulin (C27C9) Rabbit mAb #3014.
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Frozen)

Background: The maintenance of glucose homeostasis is an essential physiological process that is regulated by hormones. An elevation in blood glucose levels during feeding stimulates insulin release from pancreatic β cells through a glucose sensing pathway (1). Insulin is synthesized as a precursor molecule, proinsulin, which is processed prior to secretion. A- and B-peptides are joined together by a disulfide bond to form insulin, while the central portion of the precursor molecule is cleaved and released as the C-peptide. Insulin stimulates glucose uptake from blood into skeletal muscle and adipose tissue. Insulin deficiency leads to type 1 diabetes mellitus (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: MEP50 (methylosome protein 50) is a component of the methylosome, a protein arginine methyltransferase complex that modifies specific arginine residues found in arginine- and glycine-rich regions of some spliceosomal Sm proteins. MEP50 is important for methylosome activity and may regulate the transfer of Sm proteins to the SMN (survival of motor neurons) complex, an early step in the assembly of U snRNPs. Both the methylosome and the SMN complex are essential for the assembly of spliceosomal snRNPs (1).MEP50 is a WD repeat protein that may provide an interface for multiple protein interactions between methylosome proteins. (1). It binds to JBP1, an arginine protein methyltransferase component of the methylosome. MEP50 has been shown to interact with CTD phosphatase FCP1 (CTDP1), a protein that may link the processes of transcriptional elongation and splicing (2), and with SUZ12, a polycomb group protein involved in transcriptional repression (3). JBP1 and MEP50 have also been reported to interact with the methyl-CpG binding protein complex MBD2/NuRD (4).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-RelB (Ser552) (D41B9) XP® Rabbit mAb #5025.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Glucose homeostasis is regulated by hormones and cellular energy status. Elevations of blood glucose during feeding stimulate insulin release from pancreatic β-cells through a glucose sensing pathway. Feeding also stimulates release of gut hormones such as glucagon-like peptide-1 (GLP-1), which further induces insulin release, inhibits glucagon release and promotes β-cell viability. CREB-dependent transcription likely plays a role in both glucose sensing and GLP-1 signaling (1). The protein CRTC2 (CREB-regulated transcription coactivator 2)/TORC2 (transducer of regulated CREB activity 2) functions as a CREB co-activator (2,3) and is implicated in mediating the effects of these two pathways (4). In quiescent cells, CRTC2/TORC2 is phosphorylated at Ser171 and becomes sequestered in the cytoplasm via an interaction with 14-3-3 proteins. Glucose and gut hormones lead to the dephosphorylation of CRTC2/TORC2 and its dissociation from 14-3-3 proteins. Dephosphorylated CRTC2/TORC2 enters the nucleus to promote CREB-dependent transcription. CRTC2/TORC2 plays a key role in the regulation of hepatic gluconeogenic gene transcription in response to hormonal and energy signals during fasting (5).CRTC2/TORC2-related proteins CRTC1/TORC1 and CRTC3/TORC3 also act as CREB co-activators (2,3). CRTC1/TORC1, CRTC2/TORC2 and CRTC3/TORC3 associate with the HTLV Tax protein to promote Tax-dependent transcription of HTLV-1 long terminal repeats (6,7). CRTC1/TORC1 is highly phosphorylated at Ser151 in mouse hypothalamic cells under basal conditions (8). When these cells are exposed to cAMP or a calcium activator, CRTC1/TORC1 is dephosphorylated and translocates into the nucleus (8). CRTC1/TORC1 is essential for energy balance and fertility (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Ras-related protein Rab1A (Rab1A) is a member of the Ras superfamily of cellular G proteins that function in protein transport and membrane restructuring (1). Early immunofluorescence studies determined that Rab1A localizes to a region between the endoplasmic reticulum (ER) and the Golgi complex, and in early Golgi compartments (2). Rab1A binds and recruits the COPII complex tethering factor p115 to a cis-SNARE complex associated with COPII-coated, budding vesicles on the endoplasmic reticulum (3). A Rab1 effector complex containing several proteins, including the cis-Golgi tethering protein GM130 and the stacking protein GRASP65, is essential for targeting and fusion of COPII-coated vesicles with the Golgi complex (4). Rab1A also interacts with the golgin tethering and docking proteins giantin (GOLGB1) and golgin-84 to regulate Golgi structure formation and function (5,6). Thus, Rab1A plays an important role in mediating the export of newly synthesized target proteins from ER to the Golgi. As with other Rab proteins, Rab1A function requires an intrinsic GTPase cycling activity facilitated by associated GEF and GAP factors (7-9). In addition to mediating ER to Golgi transport, Rab1A is also involved in autophagy during early autophagosome formation (10,11).

This sampler kit provides an economical means to investigate protein folding and stability. The kit contains primary and secondary antibodies to perform two Western blots with each antibody.
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The NFAT (nuclear factor of activated T cells) family of proteins consists of NFAT1 (NFATc2 or NFATp), NFAT2 (NFATc1 or NFATc), NFAT3 (NFATc4), and NFAT4 (NFATc3 or NFATx). All members of this family are transcription factors with a Rel homology domain and regulate gene transcription in concert with AP-1 (Jun/Fos) to orchestrate an effective immune response (1,2). NFAT proteins are predominantly expressed in cells of the immune system, but are also expressed in skeletal muscle, keratinocytes, and adipocytes, regulating cell differentiation programs in these cells (3). In resting cells, NFAT proteins are heavily phosphorylated and localized in the cytoplasm. Increased intracellular calcium concentrations activate the calcium/calmodulin-dependent serine phosphatase calcineurin, which dephosphorylates NFAT proteins, resulting in their subsequent translocation to the nucleus (2). Termination of NFAT signaling occurs upon declining calcium concentrations and phosphorylation of NFAT by kinases such as GSK-3 or CK1 (3,4). Cyclosporin A and FK506 are immunosuppressive drugs that inhibit calcineurin and thus retain NFAT proteins in the cytoplasm (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Spry1 is a member of the Sprouty (Spry) family proteins that was initially identified in Drosophila as an inhibitor of the FGF signaling pathway (1). There are four human Spry proteins (Spry1-4), encoded by different genes, and they all share a highly conserved carboxy-terminal cystine-rich Spry domain that is known to be essential for their receptor tyrosine kinase inhibitory function stimulated by various growth factors (1-3). Spry1 and other Spry proteins play a key role in embryonic development, tissue and organ formation, as well as growth in almost all living organisms (1-4). Spry proteins are considered tumor suppressors due to their inhibitory function in a variety of growth factor signaling pathways (2,3). Spry1 anchors itself to the membrane by palmitoylation and can translocate from the cytosol to the membrane by binding to caveolin-1 (5,6). Regulation of Spry1 protein function is thought to occur at various levels. Spry1 regulation includes transcriptional regulation by growth factors and kinases (1,4,7), post-transcriptional regulation by microRNA-21 (8), post-translational modifications including phosphorylation, dephosphorylation, ubiquitination and proteasomal degradation, and regulation by its interacting protein partners (2,3).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: C1QBP, also referred to as p32, p33, gC1q receptor (gC1qR), and hyaluronic acid binding protein 1 (HABP1), was originally identified via its binding interactions with Splicing Factor (SF-2) (1). Multiple, diverse binding partners of C1QBP were subsequently identified, including the globular heads of complement component C1q, hyaluronic acid, selected protein kinases (2), the tumor suppressor ARF (3-5), and multiple antigens of bacterial and viral origin (6). Research studies have shown that C1QBP is overexpressed in a number of cancer cell types (7), and has been implicated in the Warburg effect, whereby cancer cells shift their metabolism from oxidative phosphorylation to glycolysis (7). C1QBP has also been shown to inhibit the Mitochondrial Permeability Transition (MPT) pore, possibly serving a protective function against damage from oxidative stress (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The type I interferon (IFN) family includes IFN-β1 and IFN-α1 through IFN-α13 in humans and IFN-α1 through IFN-α14 in mice. Type I IFN is produced following detection of pathogen-associated molecular patterns (PAMPs) and is important for induction of antiviral genes, activation of dendritic cells, and initiation of adaptive immunity (1, 2). Type I IFNs signal through the IFN alpha receptor (IFNAR), which is a heterodimer composed of IFNAR1 and IFNAR2. Activation of IFNAR leads to formation of the nuclear complex IFN-stimulated gene factor 3 (ISGF3), which consists of STAT1, STAT2, and IRF-9 (3, 4). ISGF3 binds to IFN-stimulated response elements (ISREs) to initiate transcription of interferon-stimulated genes (3).