Microsize antibodies for $99 | Learn More >>

Product listing: SimpleDIP™ Methylated DNA IP (MeDIP) Kit #76853 to Hippo Pathway: Upstream Signaling Antibody Sampler Kit, UniProt ID P35240 #56612

$357
10 immunoprecipitations
1 Kit
The SimpleDIP™ Methylated DNA IP (MeDIP) Kit provides enough reagents to perform up to 10 genomic DNA preparations and 10 IPs from mammalian cells and is optimized for 1 μg of genomic DNA per IP. The SimpleDIP™ protocol can be performed in as little as two days and can easily be scaled up or down for use with more or less cells. Cells are first lysed and genomic DNA is extracted and sonicated into small fragments (200-500 bp). DNA IPs are performed using 5-Methylcytosine (5-mC) (D3S2Z) Rabbit mAb and ChIP-Grade Protein G Magnetic Beads. After elution from the beads, the DNA is purified using DNA purification spin columns provided in the kit. The enrichment of particular DNA sequences can be analyzed by a variety of methods including standard PCR, quantitative real-time PCR, or next-generation sequencing. The SimpleDIP™ 5-Methylcytosine DNA IP Kit provides a highly validated 5-mC monoclonal antibody to ensure specific and robust signal. The kit also contains human and mouse control primer sets to regions of the genome that contain 5-methylcytosine. Thus, the IP of genomic DNA with 5-Methylcytosine (5-mC) (D3S2Z) Rabbit mAb will enrich for the sequences amplified by the control primer sets, while the IP with Rabbit (DA1E) mAb XP® Isotype Control (DIP Formulated) will not result in any enrichment.

Background: DNA immunoprecipitation (DIP) is a technique that uses antibodies to immunoenrich for regions of the genome containing modified nucleotides. This assay was first used with a 5-methylcytosine antibody to identify differentially methylated sites within normal and transformed cells (1). Investigators can use the DIP assay to look at specific genomic loci or look across the entire genome by utilizing next-generation sequencing (NGS) (2). When performing the DIP assay, cells are first lysed and the nucleic acids are recovered using phenol-chloroform extraction and ethanol precipitation. RNA is then removed by RNase A digestion, and genomic DNA is isolated by a second round of phenol-chloroform extraction and ethanol precipitation. The resulting genomic DNA is then fragmented by either restriction enzyme digestion or sonication and subjected to immunoprecipitation (IP) using antibodies specific to the modified nucleotide. Any sequences containing the modified nucleotide will be enriched by the immunoselection process. After IP, the DNA is purified and Quantitative Real-Time PCR can be used to measure the amount of enrichment of a particular DNA sequence. Alternatively, the DIP assay can be combined with NGS to provide genome-wide analysis of a specific DNA modification.

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The serum response factor (SRF) is a 67 kDa phospho-protein that, together with auxiliary factors, modulates transcription of immediate early genes containing serum response elements at their promoters (1,2). SRF contains several phosphorylation sites (3), but functional consequences of phosphorylation have not been identified unequivocally. Several growth factor- and calcium-regulated kinases, such as p90RSK and CaM kinase IV, can phosphorylate SRF at Ser103 (4,5), and Ser103 of SRF is also a nuclear target for MAPKAP kinase 2 (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Hippo pathway is an important evolutionarily conserved signaling pathway that controls organ size and tumor suppression by inhibiting cell proliferation and promoting apoptosis (1,2). An integral function of the Hippo pathway is to repress the activity of Yes-associated protein (YAP), a proposed oncogene whose activity is regulated by phosphorylation and subcellular localization (3,4). When the Hippo pathway is turned off, YAP is phosphorylated and translocates to the nucleus where it associates with various transcription factors including members of the transcriptional enhancer factor (TEF) family, also known as the TEA domain (TEAD) family (TEAD1-4) (5,6). Although widely expressed in tissues, the TEAD family proteins have specific tissue and developmental distributions. YAP/TEAD complexes regulate the expression of genes involved in cell proliferation and apoptosis (5).

NuRD Complex Antibody Sampler Kit offers an economical means of detecting each target protein that composes the nucleosome remodeling and deacetylation complex (NuRD). The kit contains enough primary antibody to perform two western blot experiments with each primary antibody.
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Anoctamin 1, also called TMEM16A for Transmembrane Member 16A, is a plasma membrane calcium-activated chloride channel (1). It is essential for chloride secretion from epithelial tissues (2), and has been shown to be a specific marker for cells of Cajal (3), the pacemaker cells that control smooth muscle contraction. Anoctamin 1 knockout mice exhibit an altered gastric smooth muscle rhythmic contraction (4). More recently, research studies have identified Anoctamin 1 as a heat sensor in nociceptive neurons (5). Heat above 44ºC triggers anoctamin 1-dependent depolarization, contributing to the mediation of thermal nociception (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Tax1-binding protein (TAX1BP) 1 is an essential regulator of innate immunity and was originally identified in a yeast two-hybrid screen as a human T-lymphotropic virus Type 1 (HTLV-1) Tax1-binding protein and named TXBP151 (1-3). Independently, TAX1BP1 was discovered in yeast two-hybrid screens that sought to identify novel binding partners of A20 (4) and TRAF6, where it was named T6BP (5). Two human TAX1BP1 transcripts encoding modular proteins of 747 and 789 amino acids have been identified (4). The N-terminal region of TAX1BP1 possesses a SKIP carboxyl homology (SKITCH) domain and a 14-3-3 binding motif. The central region of TAX1BP1 harbors coiled-coil structures and helix-loop-helix regions that are thought to promote the formation of TAX1BP1 homodimers (5). The TAX1BP1 C-terminal region posesses zinc finger domains that function as novel ubiquitin-binding domains and allow for complex formation with K63-ubiquitinated RIP1 and TRAF6 (6) as well as the E3 ubiquitin ligase ITCH (7). One of the major physiologic roles of TAX1BP1 is to serve as an essential component of a negative feedback loop aimed at restraining canonical NF-κB-mediated proinflammatory signaling cascades initiated by TNF and IL-1. It is likely that TAX1BP1 functions as a ubiquitin-binding adaptor protein that inducibly recruits A20 to a complex consisting, in part, of K63-ubiquitinated TRAF6, RIP1, and their cognate E2 conjugating enzyme, thus allowing for A20-mediated ubiquitin-editing and termination of NF-κB signaling (6,8,9). A recent report identified IKKα as a novel regulator of TAX1BP1 function and demonstrated that IKKα-dependent phosphorylation of TAX1BP1 at Ser593 and Ser624 in response to TNF and IL-1 is critical for its ability to orchestrate formation of the A20 ubiquitin-editing complex involved in termination of NF-κB signaling (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: TNF receptor-associated protein 1 (TRAP1), also known as HSP75, is a mitochondrial chaperone and ATPase that was originally identified as a protein that interacts with the TNF receptor. Although a member of the HSP90 family, TRAP1 is not heat-inducible but is upregulated by glucose deprivation, oxidative injury, and UV irradiation. An amino-terminal mitochondrial localization sequence results in localization of TRAP1 within mitochondria (1). Overexpression of TRAP1 decreases oxidative stress, suggesting a protective role in ischemia injury (2). Research studies demonstrate that silencing of TRAP1 enhances cytochrome C release and apoptosis, with additional evidence indicating that TRAP1 can protect cells from cell death by inhibiting the generation of reactive oxygen species (3). TRAP1 is a substrate of the mitochondrial serine/threonine kinase PINK1, whose corresponding gene is mutated in some forms of early-onset Parkinson's disease (PD). PINK1 protects cells from oxidative stress-induced cell death by suppressing release of cytochrome C from mitochondria. PD-linked PINK1 mutations impair the ability of PINK1 to phosphorylate TRAP1 and leads to impaired cell survival (4). Finally, TRAP1 alleviates α-synuclein induced toxicity and rescues the PINK1 loss-of-function phenotype (5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Adherens junctions are dynamic structures that form cell-cell contacts and are important in development, differentiation, tissue integrity, morphology and cell polarity. They are composed of the transmembrane proteins, cadherins, which bind cadherins on adjacent cells in a calcium-dependent manner. On the cytoplasmic side of adherens junctions, the classic model states that cadherins are linked to the cytoskeleton through β- and α-catenin. α-E-catenin is ubiquitously expressed, α-N-catenin is expressed in neuronal tissue, and α-T-catenin is primarily expressed in heart tissue. Research studies have demonstrated that loss of E-cadherin and α-E-catenin occurs during the progression of several human cancers, indicating that the breakdown of adherens junctions is important in cancer progression (reviewed in 1).Research studies also suggest that, rather than acting as a static link between cadherins and actin, α-catenin regulates actin dynamics directly, possibly by competing with the actin nucleating arp2/3 complex (2,3). α-catenin also plays a role in regulating β-catenin-dependent transcriptional activity, affecting differentiation and response to Wnt signaling. α-catenin binds to β-catenin in the nucleus, preventing it from regulating transcription, and levels of both proteins appear to be regulated via proteasome-dependent degradation (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Rab11 family proteins consist of closely related Rab11a, Rab11b, and Rab25. They are small GTPases thought to play an essential role in regulating endocytic membrane traffic (1,2). The GTP-bound active state Rab11 proteins interact with the Rab11 family interacting proteins (Rab11FIPs) via a conserved carboxy-terminal Rab11-binding domain (3,4). At least six members of the Rab11FIPs have been identified. Based on sequence homology and domain structures, Rab11FIP1, Rab11FIP2 and Rab11FIP5 are categorized as class I subfamily members, whereas Rab11FIP3 and Rab11FIP4 belong to the class II subfamily that bind Arf6 and Rab11 proteins (5-7). Research studies have implicated Rab11 family proteins and their interacting effectors in carcinogenesis (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: TRIM25, also termed Estrogen-responsive Finger Protein (EFP), is a member of the tripartite motif-containing (TRIM) family of proteins, characterized by the presence of a RING domain, one or two B-box motifs, and a coiled-coil region (1). TRIM25 was first identified in a search for estrogen-responsive genes (2), and studies have subsequently shown TRIM25 to be overexpressed in many breast cancer tumors (3). A potentially oncogenic role for TRIM25 was suggested by studies showing that suppression of TRIM25 expression inhibited growth of MCF7 cells in vitro and in mouse xenograft models (4). Functional studies largely suggest that TRIM25 functions as a ubiquitin E3 or ISG15 E3 ligase. For example, TRIM25 was shown to induce K63-linked ubiquitination of Rig-I, resulting in Rig-I-mediated activation of downstream signaling cascades that drive the host antiviral innate immune response (5). Notably, it was reported that the influenza A virus non-structural protein 1 inhibits TRIM25-mediated ubiquitination of Rig-I, which may have evolved as a mechanism to evade the host innate immune response (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Cytochrome P450, subfamily 3A, polypeptide 4 (CYP3A4) is a mono-oxygenase enzyme (1) found in the endoplasmic reticulum membrane of liver and prostate microsomes. It is an important enzyme in drug metabolism; it catalyzes phase I oxidation reactions in approximately 50% of drugs in the modern market, as well as steroids, fatty acids, and some carcinogens (2). It is also involved in steroid and cholesterol synthesis (3,4). Expression of CYP3A4 can be induced by glucocorticoids, carcinogens, pesticides, and drugs, which can lead to drug interactions and toxicity (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Phosphofructokinase (PFK) catalyzes the phosphorylation of fructose-6-phosphate in glycolysis (1). There are three isozymes: muscle-type, liver-type, and platelet-type (2,3). Platelet-type phosphofructokinase (PFKP) is expressed in various cell types (4,5). Research studies have shown that genetic variations in PFKP are associated with individuals born small for gestational age that are prone to obesity and diabetes later in adulthood (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Splicing factor 3b subunit 1 (SF3B1) is an integral component of the U2 small nuclear ribonucleoprotein (U2 snRNP) and plays an important role in the splicing of pre-mRNA that involves the removal of introns and the joining of exons to form mature mRNA (1-3). The assembly and proper recognition of splice sites are driven by sequences at the pre-mRNA intron-exon splice sites. The 5’ splice donor site is recognized by the U1 snRNP complex, while U2 snRNP binds to the 3’ splice site (branch point), ensuring the anchoring of the spliceosome machinery at the splice sites (3,4). Recent whole exome sequencing studies have demonstrated a high incidence of somatic mutations of SF3B1 in patients with various hematological malignancies such as chronic lymphocytic leukemia and myelodysplastic syndromes (2,3,5,6). Misregulation of pre-mRNA splicing arising from mutations of the spliceosome components such as SF3B1 is thought to contribute to changes in the expression patterns of key proteins that are involved in pathways such as cell cycle progression, cell death, and cancer metabolism (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CAD is essential for the de novo synthesis of pyrimidine nucleotides and possesses the following enzymatic activities: glutamine amidotransferase, carbamoyl-phosphate synthetase, aspartate transcarbamoylase, and dihydroorotase. Thus, the enzyme converts glutamine to uridine monophosphate, a common precursor of all pyrimidine bases, and it is necessary for nucleic acid synthesis (1). In resting cells, CAD is localized mainly in the cytoplasm where it carries out pyrimidine synthesis. As proliferating cells enter S phase, MAP Kinase (Erk1/2) phosphorlyates CAD at Thr456, resulting in CAD translocation to the nucleus. As cells exit S phase, CAD is dephosphorylated at Thr456 and phosphorylated at Ser1406 by PKA, returning the pathway to basal activity (2). Various research studies have shown increased expression of CAD in several types of cancer, prompting the development of pharmacological inhibitors such as PALA. Further studies have identified CAD as a potential predictive early marker of prostate cancer relapse (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Chicken ovalbumin upstream promoter transcription factor (COUP-TF) belongs to the NR2 subfamily of the nuclear hormone receptor family (1). COUP-TFI and COUP-TFII are two of the well-characterized members in the NR2 subfamily. These two members are highly conserved in their two zinc-finger DNA binding domains (DBD) and the ligand binding domain (LBD), and function as repressors or activators of downstream target genes to regulate different biological processes (1-3). COUP-TFI and II bind to 5'-AGGTCA-3' motif palindromes, either directly or indirectly, through heterodimer formation with other proteins (e.g. RXRs) to regulate downstream target gene expression (4,5). COUP-TFI is involved in neuronal development, tissue patterning, and differentiation (6-8). COUP-TFII has been shown to be involved in angiogenesis, glucose homeostasis, and mesenchymal cell commitment (9-12).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: Fgr is a member of the Src tyrosine kinase family. It has a membrane-associated amino-terminal domain that is highly divergent from other family members, internal conserved SH2 and SH3 domains and a highly conserved carboxy-terminal tyrosine kinase catalytic domain (1,2). Tyrosine 412 is located in the activation loop, and phosphorylation of this residue is critical for the activation of Fgr tyrosine kinase activity. c-Fgr is predominantly expressed in cells of hematopoietic origin including differentiated myeloid cells, NK and B cells (3,4). Fgr plays an important role in the signaling cascade from membrane receptors lacking intrinsic tyrosine kinase activity such as Bcr, FcR, and the integrin family of receptors (5). It was demonstrated that Fgr functions as a selective inhibitor of beta2 integrin-mediated signaling and Syk kinase function in monocytes (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: Ryanodine receptors (RyRs) are large (>500 kDa), intracellular calcium channels found in the sarcoplasmic/endoplasmic reticulum membrane and are responsible for the release of Ca2+ from intracellular stores in excitable cells, such as muscle and neurons. RyRs exist as three mammalian isoforms (RyR1-3), all of which form homotetramers regulated by phosphorylation and/or direct or indirect interaction with a variety of proteins (L-type calcium channels, PKA, FKBP12/12.6, CaMKII, calmodulin, calsequestrin, junctin, and triadin) and ions (Mg2+ and Ca2+). Regulation of the RyR channel by protein modulators occurs within the large cytoplasmic domain, whereas the carboxy-terminal portion of the protein forms the ion-binding and conducting pore (1,2). RyR1 and RyR2 are predominantly expressed in skeletal and cardiac muscle, respectively, where they localize exclusively to the sarcoplasmic reticulum (SR) and facilitate calcium-mediated communication between transverse-tubules and sarcoplasmic reticulum. Contraction of skeletal muscle is triggered by release of calcium ions from the SR following depolarization of T-tubules. Research studies have shown that defects in RyR1 are the cause of malignant hyperthermia susceptibility type 1 (MHS1), central core disease of muscle (CCD), multiminicore disease with external ophthalmoplegia, and congenital myopathy with fiber-type disproportion (CFTD), each of which is manifested by defects in muscle function, metabolism, and development (2). Investigators have shown that defects in RyR2 are the cause of familial arrhythmogenic right ventricular dysplasia type 2 (ARVD2) and catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1), both of which are implicated in sudden death syndromes as a result of electrical instability and degeneration of the ventricular myocardium or stress-induced ventricular tachycardia (2). Despite low levels of expression in skeletal and smooth muscle, RyR3 is the dominant isoform in neuronal cells (hippocampal neurons, thalamus, Purkinje cells) and has been implicated in synaptic plasticity, dendritic spine remodeling, and spatial memory formation (3). The role of RyR3 in neuronal function has been substantiated by mice lacking RyR3, which demonstrate normal motor function, but possess numerous behavioral and social defects (4).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: The trefoil factor (TFF) family of proteins (TFF1/pS2, TFF2, and TFF3) are a group of highly conserved, secreted polypeptides that are expressed by mucus-secreting cells of the gastrointestinal tract. Within the gastrointestinal tract, TFFs display both common and distinct expression patterns (1). Collectively, the TFF family of proteins play a prominant role in the protection and repair of the mucous epithelia lining the gastrointestinal tract through their interactions with mucins (2). TFFs have been shown to regulate a number of cellular processes such as migration, apoptosis, and proliferation. In humans, dysregulated expression of TFFs has been observed in inflammatory bowel diseases as well as tumors of the breast, colon, lung, and stomach (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Protein ubiquitination requires the concerted action of the E1, E2, and E3 ubiquitin-conjugating enzymes. Ubiquitin is first activated through ATP-dependent formation of a thiol ester with ubiquitin-activating enzyme E1. The activated ubiquitin is then transferred to a thiol group of ubiquitin-carrier enzyme E2. The final step is the transfer of ubiquitin from E2 to an ε-amino group of the target protein lysine residue, which is mediated by ubiquitin-ligase enzyme E3 (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Interferon regulatory factors (IRFs) comprise a family of transcription factors that function within the Jak/Stat pathway to regulate interferon (IFN) and IFN-inducible gene expression in response to viral infection (1). IRFs play an important role in pathogen defense, autoimmunity, lymphocyte development, cell growth, and susceptibility to transformation. The IRF family includes nine members: IRF-1, IRF-2, IRF-9/ISGF3γ, IRF-3, IRF-4 (Pip/LSIRF/ICSAT), IRF-5, IRF-6, IRF-7, and IRF-8/ICSBP. All IRF proteins share homology in their amino-terminal DNA-binding domains. IRF family members regulate transcription through interactions with proteins that share similar DNA-binding motifs, such as IFN-stimulated response elements (ISRE), IFN consensus sequences (ICS), and IFN regulatory elements (IRF-E) (2).

$142
1 ml
Affinity purified goat anti-mouse IgG (H+L) antibody is conjugated to biotin. This product has been optimized for use as a secondary antibody in western blotting applications.
APPLICATIONS

Application Methods: Western Blotting

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Neurofibromatosis 2 (NF2) is an autosomal dominant, inherited disorder characterized by the occurrence of vestibular schwannomas, meningiomas, and other nervous system tumors. Both the familial tumors of NF2 and equivalent sporadic tumors found in the general population are caused by inactivation of the NF2 tumor suppressor gene. Merlin (moesin, ezrin, and radixin-like protein) is the NF2 gene product, displaying striking similarity to ezrin, radixin, and moesin (ERM) proteins. Regulation of merlin (also called schwannomin) and ERM proteins involves intramolecular and intermolecular head-to-tail associations between family members (1). Merlin and ERM proteins act as linkers between the plasma membrane and the cytoskeleton, affecting cell morphology, polarity, and signal transduction (2). Merlin is phosphorylated by the Rac/Cdc42 effector p21-activated kinase (PAK) at Ser518, negatively regulating Rac (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: NCK1 (also known as NCK or NCKα) is a broadly expressed oncogenic adapter protein consisting of three SH3 domains and one SH2 domain (1-3). NCK1 becomes phosphorylated upon activation of variety of cell surface receptors and is involved in actin cytoskeletal organization induced by many stimuli (4-6). NCK2 (also known as NCKβ), a homolog of NCK1, has an overlapping expression pattern and redundant functions with NCK1 (7).

$269
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of the neurotransmitter dopamine and other catecholamines. TH functions as a tetramer, with each subunit composed of a regulatory and catalytic domain, and exists in several different isoforms (1,2). This enzyme is required for embryonic development since TH knockout mice die before or at birth (3). Levels of transcription, translation and posttranslational modification regulate TH activity. The amino-terminal regulatory domain contains three serine residues: Ser9, Ser31 and Ser40. Phosphorylation at Ser40 by PKA positively regulates the catalytic activity of TH (4-6). Phosphorylation at Ser31 by CDK5 also increases the catalytic activity of TH through stabilization of TH protein levels (7-9).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated β-Catenin (L54E2) Mouse mAb (IF Preferred) #2677.
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry)

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: The p53 tumor suppressor protein plays a major role in cellular response to DNA damage and other genomic aberrations. Activation of p53 can lead to either cell cycle arrest and DNA repair or apoptosis (1). p53 is phosphorylated at multiple sites in vivo and by several different protein kinases in vitro (2,3). DNA damage induces phosphorylation of p53 at Ser15 and Ser20 and leads to a reduced interaction between p53 and its negative regulator, the oncoprotein MDM2 (4). MDM2 inhibits p53 accumulation by targeting it for ubiquitination and proteasomal degradation (5,6). p53 can be phosphorylated by ATM, ATR, and DNA-PK at Ser15 and Ser37. Phosphorylation impairs the ability of MDM2 to bind p53, promoting both the accumulation and activation of p53 in response to DNA damage (4,7). Chk2 and Chk1 can phosphorylate p53 at Ser20, enhancing its tetramerization, stability, and activity (8,9). p53 is phosphorylated at Ser392 in vivo (10,11) and by CAK in vitro (11). Phosphorylation of p53 at Ser392 is increased in human tumors (12) and has been reported to influence the growth suppressor function, DNA binding, and transcriptional activation of p53 (10,13,14). p53 is phosphorylated at Ser6 and Ser9 by CK1δ and CK1ε both in vitro and in vivo (13,15). Phosphorylation of p53 at Ser46 regulates the ability of p53 to induce apoptosis (16). Acetylation of p53 is mediated by p300 and CBP acetyltransferases. Inhibition of deacetylation suppressing MDM2 from recruiting HDAC1 complex by p19 (ARF) stabilizes p53. Acetylation appears to play a positive role in the accumulation of p53 protein in stress response (17). Following DNA damage, human p53 becomes acetylated at Lys382 (Lys379 in mouse) in vivo to enhance p53-DNA binding (18). Deacetylation of p53 occurs through interaction with the SIRT1 protein, a deacetylase that may be involved in cellular aging and the DNA damage response (19).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The antiviral protein viperin (RSAD2) is induced by viral infection, lipopolysaccharides (LPS), polyriboinosinic polyribocytidylic acid [poly(I:C)], and interferons (1,2). Viperin protein localizes to the ER and redistributes to the Golgi and then to lipid droplets following viral infection (1,3). Viruses are known to use lipid droplets for replication, and the localization of the antiviral viperin protein to these lipid droplets is likely part of a cellular mechanism to inhibit these pathogens (4). Research studies indicate that induction of viperin by HIV in human macrophages inhibits virus production, and that siRNA targeting viperin reduced the inhibition of HIV replication observed in poly(I:C) treated astrocytes (5,6). Additional research suggests that human cytomegalovirus (HCMV) co-opts viperin protein function, resulting in an interaction between viperin and the viral protein vMIA. This association leads to relocalization of viperin to mitochondria, resulting in disruption of ATP generation and the actin cytoskeleton, and increased viral infection (7). The viperin protein also contributes to innate immune signaling by recruiting IRAK1 ant TRAF6 to lipid droplets, which results in activation of IRF7 and induction of type I interferon (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: MKK3 and MKK6 are two closely related dual-specificity protein kinases that activate p38 MAP kinase (1-5). MKK3 and MKK6 both phosphorylate and activate p38 MAP kinase at its activation site, Thr-Gly-Tyr, but do not phosphorylate or activate Erk1/2 or SAPK/JNK. Phosphorylation of p38 MAP kinase dramatically stimulates its ability to phosphorylate protein substrates such as ATF-2 and Elk-1. MKK3 and MKK6 are both activated by different forms of cellular stress and inflammatory cytokines (4,5). Activation of MKK3 and MKK6 occurs through phosphorylation at Ser189 and Thr222 on MKK3 (2) and Ser207 and Thr211 on MKK6 (4,5).

The Hippo Pathway Proteins Antibody Sampler Kit provides an economical means of detecting proteins that have been identified as upstream regulators of the Hippo Signaling Pathway. The kit provides enough antibody to perform two western blot experiments with each primary antibody.