20% off purchase of 3 or more products* | Learn More >>

Product listing: STF-1 (D1Z2A) XP® Rabbit mAb, UniProt ID Q13285 #12800 to Phospho-Bad (Ser112) (7E11) Mouse mAb, UniProt ID Q92934 #9296

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The orphan nuclear receptor, steroidogenic factor 1 (STF-1, also called Ad4BP), is encoded by the NR5A1 gene and plays an instrumental role in directing the transcriptional control of steroidogenesis (1). Initially identified as a tissue-specific transcriptional regulator of cytochrome P450 steroid hydroxylases, research studies of both global (2) and tissue-specific knockout mice (3-6) have demonstrated that STF-1 is required for the development of adrenal glands, gonads, ventromedial hypothalamus, and for the proper functioning of pituitary gonadotropes. Indeed, humans with mutations that render STF-1 transcriptionally inactive can present with testicular failure, ovarian failure, and adrenal insufficiency (7,8). Furthermore, dysregulation of STF-1 has been linked to diseases such as endometriosis (9) and adrenocortical carcinoma (10).Like other nuclear hormone receptors, STF-1 has a modular domain structure composed of an amino-terminal zinc finger DNA-binding domain, a ligand-binding domain, a carboxy-terminal AF-2 activation domain, and a hinge region with AF-1-like activation activity. STF-1 also contains a fushi tarazu factor 1 box, which functions as an accessory DNA binding domain (11). STF-1 is primarily phosphorylated at Ser203, which is thought to enhance its transcriptional activity by promoting complex formation with transcriptional cofactors (12). In addition to phosphorylation at Ser203, STF-1 is subject to SUMO conjugation and acetylation at ε-amino groups of target lysine residues. Whereas SUMOylation represses STF-1 function (13,14), acetylation enhances its transcriptional activity (15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Androgen receptor (AR), a zinc finger transcription factor belonging to the nuclear receptor superfamily, is activated by phosphorylation and dimerization upon ligand binding (1). This promotes nuclear localization and binding of AR to androgen response elements in androgen target genes. Research studies have shown that AR plays a crucial role in several stages of male development and the progression of prostate cancer (2,3).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated CD133 (A8N6N) Mouse mAb (Flow Specific) #60577.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD133, also known as Prominin, was first described as a cell surface marker recognized by monoclonal antibody AC133 on putative hematopoietic stem cells (1). Subsequent cDNA cloning indicated that CD133 is a five-transmembrane protein with a predicated molecular weight of 97 kDa. Due to heavy glycosylation, its apparent molecular weight is 130 kDa as determined by SDS-PAGE analysis (2). Besides blood stem cells, CD133 is expressed on and used to isolate other stem cells, including cancer stem cells (3-7). A deletion mutation in CD133 produces aberrant protein localization and may result in retinal degeneration in humans (8).

$305
400 µl
This Cell Signaling Technology antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated Sepharose® beads. VEGF Receptor 2 (55B11) Rabbit mAb (Sepharose® Bead Conjugate) is useful for immunoprecipitation assays. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated VEGF Receptor 2 (55B11) Rabbit mAb #2479.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation

Background: Vascular endothelial growth factor receptor 2 (VEGFR2, KDR, Flk-1) is a major receptor for VEGF-induced signaling in endothelial cells. Upon ligand binding, VEGFR2 undergoes autophosphorylation and becomes activated (1). Major autophosphorylation sites of VEGFR2 are located in the kinase insert domain (Tyr951/996) and in the tyrosine kinase catalytic domain (Tyr1054/1059) (2). Activation of the receptor leads to rapid recruitment of adaptor proteins, including Shc, GRB2, PI3 kinase, NCK, and the protein tyrosine phosphatases SHP-1 and SHP-2 (3). Phosphorylation at Tyr1212 provides a docking site for GRB2 binding and phospho-Tyr1175 binds the p85 subunit of PI3 kinase and PLCγ, as well as Shb (1,4,5). Signaling from VEGFR2 is necessary for the execution of VEGF-stimulated proliferation, chemotaxis and sprouting, as well as survival of cultured endothelial cells in vitro and angiogenesis in vivo (6-8).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-c-Jun (Ser73) (D47G9) XP® Rabbit mAb #3270.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Pig, Rat

Application Methods: Flow Cytometry

Background: c-Jun is a member of the Jun family containing c-Jun, JunB, and JunD, and is a component of the transcription factor activator protein-1 (AP-1). AP-1 is composed of dimers of Fos, Jun, and ATF family members and binds to and activates transcription at TRE/AP-1 elements (reviewed in 1). Extracellular signals including growth factors, chemokines, and stress activate AP-1-dependent transcription. The transcriptional activity of c-Jun is regulated by phosphorylation at Ser63 and Ser73 through SAPK/JNK (reviewed in 2). Knock-out studies in mice have shown that c-Jun is essential for embryogenesis (3), and subsequent studies have demonstrated roles for c-Jun in various tissues and developmental processes including axon regeneration (4), liver regeneration (5), and T cell development (6). AP-1 regulated genes exert diverse biological functions including cell proliferation, differentiation, and apoptosis, as well as transformation, invasion and metastasis, depending on cell type and context (7-9). Other target genes regulate survival, as well as hypoxia and angiogenesis (8,10). Research studies have implicated c-Jun as a promising therapeutic target for cancer, vascular remodeling, acute inflammation, and rheumatoid arthritis (11,12).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Phosphoinositide-specific phospholipase C (PLC) plays a significant role in transmembrane signaling. In response to extracellular stimuli such as hormones, growth factors and neurotransmitters, PLC hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to generate two secondary messengers: inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) (1). At least four families of PLCs have been identified: PLCβ, PLCγ, PLCδ and PLCε. The PLCβ subfamily includes four members, PLCβ1-4. All four members of the subfamily are activated by α- or β-γ-subunits of the heterotrimeric G-proteins (2,3).Phosphorylation is one of the key mechanisms that regulates the activity of PLC. Phosphorylation of Ser1105 by PKA or PKC inhibits PLCβ3 activity (4,5). Ser537 of PLCβ3 is phosphorylated by CaMKII, and this phosphorylation may contribute to the basal activity of PLCβ3. PLCγ is activated by both receptor and nonreceptor tyrosine kinases (6).PLCγ forms a complex with EGF and PDGF receptors, which leads to the phosphorylation of PLCγ at Tyr771, 783 and 1248 (7). Phosphorylation by Syk at Tyr783 activates the enzymatic activity of PLCγ1 (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cell proliferation in all eukaryotic cells depends strictly upon the ubiquitin ligase (E3) activity of the anaphase promoting complex/cyclosome (APC/C), whose main function is to trigger the transition of the cell cycle from metaphase to anaphase. APC/C performs its various functions by promoting the assembly of polyubiquitin chains on substrate proteins, which targets these proteins for degradation by the 26S proteasome (1,2). In humans, twelve different APC/C subunits have been identified. Like all E3 enzymes, APC/C utilizes ubiquitin residues that have been activated by E1 enzymes and then transferred to E2 enzymes. Indeed, APC/C has been shown to interact with UBE2S and UBE2C E2 enzymes, in part, via the RING-finger domain-containing subunit, APC11 (3-5). APC/C activity is also strictly dependent upon its association with multiple cofactors. For example, the related proteins, Cdc20 and Cdh1/FZR1, participate in the recognition of APC/C substrates by interacting with specific recognition elements in these substrates (6), called D-boxes (7) and KEN-boxes (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Cyclic GMP-dependent kinases (cGK/PKG) belong to the AGC family of serine/threonine protein kinases. In mammals, two genes encode PKG-1 and PKG-2. Alternative PKG-1 splicing yields α and β isoforms, which display tissue-specific expression patterns in humans (1). All PKG family members are activated by increased cellular cGMP, which binds to the enzyme's regulatory domain inducing a conformational change and leading to enzyme activation. cGMP levels are increased through the activation of guanylyl cyclases, a process known to occur in part through nitric oxide (NO) signaling (2).In addition to well established roles in platelet activation and smooth muscle relaxation (3), PKG signaling is important in many biological processes including cardiac contractility, axon guidance, bone growth, contraction of intestinal smooth muscle, and erectile dysfunction (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: BLM, a member of the RecQ family of DNA helicases, is part of the BRCA1-associated genome surveillance complex (BASC) that responds to DNA damage, stalled replication forks and S phase arrest (1-4). Phosphorylation of BLM helicase at Thr99 and Thr122 occurs in response to genotoxic stress (4), and phosphorylation of Ser144 appears to be important in regulating chromosome stability during mitosis (5). Typical BLM protein resides in the nucleus and forms part of a dynamic protein complex that acts in response to DNA damage during specific periods of the cell cycle (6). Although RecQ helicases are rarely considered as essential enzymes, they function at the interface between DNA recombination and repair and are required for global genome stability maintenance. Mutations in BLM helicase are responsible for development of Bloom Syndrome, a recessive genetic disorder clinically characterized by short stature, immunodeficiency and elevated risk of malignancy (7). Similar alterations to genes encoding the related RecQ helicases RecQ4 and WRN also result in recessive genetic disorders associated with genomic instability (8,9). Cells from Bloom Syndrome patients exhibit genomic instability and increased frequency of sister chromatid exchange (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: There are two isoforms of Sec23 protein: Sec23A and Sec23B. Both isoforms have been shown in the Sec23/24 complex, which is a component of COPII coat (1). COPII is composed of at least five proteins: the Sec23/24 complex, the Sec13/31 complex, and Sar1. COPII coat is located at the ER/Golgi interface and involved in transport of newly synthesized proteins from the ER to the Golgi apparatus (2). COPII formation is initiated through binding of the activated G protein, Sar1, to the Sec23/24 complex to form a prebudding complex, which directly binds target molecules (2-4). The prebudding complex further recruits Sec13/31 to form mature COPII coat (5,6). In addition to being a COPII component, Sec23 has also been shown to interact with p125 and Sec16 at the transitional ER; these interactions are important for regulation of the COPII transportation function (7,8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: CAD is essential for the de novo synthesis of pyrimidine nucleotides and possesses the following enzymatic activities: glutamine amidotransferase, carbamoyl-phosphate synthetase, aspartate transcarbamoylase, and dihydroorotase. Thus, the enzyme converts glutamine to uridine monophosphate, a common precursor of all pyrimidine bases, and it is necessary for nucleic acid synthesis (1). In resting cells, CAD is localized mainly in the cytoplasm where it carries out pyrimidine synthesis. As proliferating cells enter S phase, MAP Kinase (Erk1/2) phosphorlyates CAD at Thr456, resulting in CAD translocation to the nucleus. As cells exit S phase, CAD is dephosphorylated at Thr456 and phosphorylated at Ser1406 by PKA, returning the pathway to basal activity (2). Various research studies have shown increased expression of CAD in several types of cancer, prompting the development of pharmacological inhibitors such as PALA. Further studies have identified CAD as a potential predictive early marker of prostate cancer relapse (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Despite their relatively small size (8-12 kDa) and uncomplicated architecture, S100 proteins regulate a variety of cellular processes such as cell growth and motility, cell cycle progression, transcription, and differentiation. To date, 25 members have been identified, including S100A1-S100A18, trichohyalin, filaggrin, repetin, S100P, and S100Z, making it the largest group in the EF-hand, calcium-binding protein family. Interestingly, 14 S100 genes are clustered on human chromosome 1q21, a region of genomic instability. Research studies have demonstrated that significant correlation exists between aberrant S100 protein expression and cancer progression. S100 proteins primarily mediate immune responses in various tissue types but are also involved in neuronal development (1-4).Each S100 monomer bears two EF-hand motifs and can bind up to two molecules of calcium (or other divalent cation in some instances). Structural evidence shows that S100 proteins form antiparallel homo- or heterodimers that coordinate binding partner proximity in a calcium-dependent (and sometimes calcium-independent) manner. Although structurally and functionally similar, individual members show restricted tissue distribution, are localized in specific cellular compartments, and display unique protein binding partners, which suggests that each plays a specific role in various signaling pathways. In addition to an intracellular role, some S100 proteins have been shown to act as receptors for extracellular ligands or are secreted and exhibit cytokine-like activities (1-4).

$303
100 µl
This Cell Signaling Technology® antibody is conjugated by the covalent reaction of hydrazinonicotinamide-modified antibody with formylbenzamide-modified horseradish peroxidase (HRP). The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Acetylated-Lysine (Ac-K-100) MultiMab™ Rabbit mAb mix (HRP Conjugate) #9814.
APPLICATIONS
REACTIVITY
All Species Expected, Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Acetylation of lysine, like phosphorylation of serine, threonine or tyrosine, is an important reversible modification controlling protein activity. The conserved amino-terminal domains of the four core histones (H2A, H2B, H3, and H4) contain lysines that are acetylated by histone acetyltransferases (HATs) and deacetylated by histone deacetylases (HDACs) (1). Signaling resulting in acetylation/deacetylation of histones, transcription factors, and other proteins affects a diverse array of cellular processes including chromatin structure and gene activity, cell growth, differentiation, and apoptosis (2-6). Recent proteomic surveys suggest that acetylation of lysine residues may be a widespread and important form of posttranslational protein modification that affects thousands of proteins involved in control of cell cycle and metabolism, longevity, actin polymerization, and nuclear transport (7,8). The regulation of protein acetylation status is impaired in cancer and polyglutamine diseases (9), and HDACs have become promising targets for anti-cancer drugs currently in development (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Eukaryotic initiation factor 5A (eIF5A) is an mRNA-binding protein that is involved in translation elongation and plays an important role in promoting translation of polyproline motifs (1-4). The eIF5A (eIF5A1) and eIF5A2 genes encode the two vertebrate eIF5A isoforms. While eIF5A1 is expressed constitutively in all tissues, eIF5A2 is mainly expressed in gonads. eIF5A and eIF5A2 are the only identified proteins that contain the distinctive amino acid hypusine, which is generated posttranslationally from lysine through a highly conserved polyamine metabolism pathway. eIF5A function and hypusine modification are both essential for cell proliferation, as knock down of eIF5A expression or blocking eIF5A hypusine modification suppresses cancer cell proliferation (5-7). Interestingly, eIF5A is an identified component of a tumor suppressor network of the polyamine-hypusine axis. Co-suppression of both eIF5A and adenosylmethionine decarboxylase 1 (AMD1) promotes lymphomagenesis in mice, while heterozygous deletions of the corresponding AMD1 and eIF5A genes often occur together in human lymphomas (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The retinoblastoma (Rb) tumor suppressor family includes the retinoblastoma protein Rb (p105), retinoblastoma-like protein 1 (RBL1, p107), and retinoblastoma-like protein 2 (RBL2, p130). These Rb family proteins are referred to as "pocket proteins" because they contain a conserved binding pocket region that interacts with critical regulatory proteins, including E2F family transcription factors, c-Abl tyrosine kinase, and proteins containing a conserved LXCXE motif (1,2). In quiescent G0 phase cells, active Rb proteins hypophosphorylate and bind to E2F transcription factors to repress transcription and inhibit cell cycle progression (1,2). Upon growth factor induction of quiescent cells, Rb proteins become hyperphosphorylated and inactivated by G1-phase cyclinD-cdk4/6, G1/S-phase cyclin E-cdk2, and G1/S-phase cyclin A-cdk2 complexes (1,2). Hyperphosphorylation of Rb proteins results in a loss of E2F binding and allows for transcriptional activation and cell cycle progression (1,2). In addition to regulating the cell cycle, Rb proteins regulate chromosome stability, induction, and maintenance of senescence, apoptosis, cellular differentiation, and angiogenesis (3).Retinoblastoma-like protein 1 (RBL1, p107) interacts with E2F4 and E2F5 to recruit the DP, RB-like, E2F, and MuvB protein (DREAM) complex to E2F target genes to repress transcription of multiple genes required for progression into S phase and mitosis (4-6). Hypophosphorylation of RBL1 during cellular senescence is required for maintenance of senescent cells (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Dickkopf (DKK) family proteins consist of four members DKK1, DKK2, DKK3 and DKK4 that function as secreted Wnt antagonists by inhibiting Wnt coreceptors LRP5 and LRP6 (1,2). DKKs contain two cysteine-rich domains in which the positions of 10 cysteine residues are well conserved (3). Their expression is both temporally and spatially regulated during animal development (4). DKKs also bind with high affinity to transmembrane proteins Kremen1 and 2, which themselves also modulate Wnt signaling (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Human alcohol dehydrogenase (ADH) genes are grouped into five classes, with three distinct class I ADH genes (ADH1A, ADH1B and ADH1C) and ADH4, ADH5, ADH7 and ADH6 belonging to classes II, III, IV, and V, respectively. ADH is a zinc-containing, dimeric enzyme that catalyzes the conversion of cytosolic alcohol to acetaldehyde in the liver with the coenzyme NAD (1). ADH1A is monomorphic and is the predominant fetal and neonatal liver ADH enzyme. In contrast, polymorphic ADH1B and ADH1C enzymes are predominant in adult livers (2). Polymorphisms in the human class I ADH genes result in functionally variable ADH enzymes; evidence suggests that specific variants may provide protection from the risk of alcoholism (3).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: The DNA mismatch repair system (MMR) repairs post-replication DNA, inhibits recombination between nonidentical DNA sequences, and induces both checkpoint and apoptotic responses following certain types of DNA damage (1). MSH2 (MutS homologue 2) forms the hMutS-α dimer with MSH6 and is an essential component of the mismatch repair process. hMutS-α is part of the BRCA1-associated surveillance complex (BASC), a complex that also contains BRCA1, MLH1, ATM, BLM, PMS2 proteins, and the Rad50-Mre11-NBS1 complex (2). Mutations in MSH6 and other MMR proteins have been found in a large proportion of hereditary nonpolyposis colorectal cancer (Lynch Syndrome), the most common form of inherited colorectal cancer in the Western world (3). Mutations in MSH6 have been shown to occur in glioblastoma in response to temozolomide therapy and to promote temozolomide resistance (4).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Guinea Pig, Human, Mouse

Application Methods: Western Blotting

Background: The p21-activated kinase (PAK) family of serine/threonine kinases is engaged in multiple cellular processes, including cytoskeletal reorganization, MAPK signaling, apoptotic signaling, control of phagocyte NADPH oxidase, and growth factor-induced neurite outgrowth (1,2). Several mechanisms that induce PAK activity have been reported. Binding of Rac/Cdc42 to the CRIB (or PBD) domain near the amino terminus of PAK causes autophosphorylation and conformational changes in PAK (1). Phosphorylation of PAK1 at Thr423 by PDK induces activation of PAK1 (3). Several autophosphorylation sites have been identified, including Ser199 and Ser204 of PAK1 and Ser192 and Ser197 of PAK2 (4,5). Because the autophosphorylation sites are located in the amino-terminal inhibitory domain, it has been hypothesized that modification in this region prevents the kinase from reverting to an inactive conformation (6). Research indicates that phosphorylation at Ser144 of PAK1 or Ser139 of PAK3 (located in the kinase inhibitory domain) affects kinase activity (7). Phosphorylation at Ser21 of PAK1 or Ser20 of PAK2 regulates binding with the adaptor protein Nck (8). PAK4, PAK5, and PAK6 have lower sequence similarity with PAK1-3 in the amino-terminal regulatory region (9). Phosphorylation at Ser474 of PAK4, a site analogous to Thr423 of PAK1, may play a pivotal role in regulating the activity and function of PAK4 (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The human urokinase-type plasminogen activator receptor (uPAR) is a 55-65 kDa, highly glycosylated, GPI-anchored cell surface receptor (the deglycosylated protein is 35 kDa) (1-3). It is a central player in the plasminogen activation pathway. uPAR binds with high affinity to a serine protease urokinase-type plasminogen activator (uPA) and converts plasminogen to its active form plasmin in a spatially restricted manner on the cell surface (4). Plasmin further carries out the activation of uPA, which is inhibited by serpins, such as plasminogen activator inhibitors (5). Therefore, uPAR plays a key role in regulating extracellular proteolysis. In addition, uPAR plays an important role in regulating cell proliferation, adhesion and mobility (6,7). Research studies have shown that overexpression of uPAR is found in various cancer cells and tissues (8,9).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2 and then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). Combinatorial interactions of different E2 and E3 proteins result in substrate specificity (4). Recent data suggests that activated E2 associates transiently with E3, and the dissociation is a critical step for ubiquitination (5). S phase kinase-associated protein 1 (Skp1) is a critical scaffold protein of the Skp1/CUL1/F-box (SCF) E3 ubiquitin ligase protein complex. Various F-box proteins (e.g., β-TrCP, Skp2) mediate an interaction with Skp1, via their defining and conserved domain of 40 amino acids, and with substrates to be ubiquitinated (e.g., β-catenin, p27) (4).

The Autophagosome Marker Antibody Sampler Kit provides an economical means to investigate the accumulation of autophagosomes within the cell. The kit contains enough primary and secondary antibodies to perform two western blots per primary antibody.
$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated NFAT1 (D43B1) XP® Rabbit mAb #5861.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: The NFAT (nuclear factor of activated T cells) family of proteins consists of NFAT1 (NFATc2 or NFATp), NFAT2 (NFATc1 or NFATc), NFAT3 (NFATc4), and NFAT4 (NFATc3 or NFATx). All members of this family are transcription factors with a Rel homology domain and regulate gene transcription in concert with AP-1 (Jun/Fos) to orchestrate an effective immune response (1,2). NFAT proteins are predominantly expressed in cells of the immune system, but are also expressed in skeletal muscle, keratinocytes, and adipocytes, regulating cell differentiation programs in these cells (3). In resting cells, NFAT proteins are heavily phosphorylated and localized in the cytoplasm. Increased intracellular calcium concentrations activate the calcium/calmodulin-dependent serine phosphatase calcineurin, which dephosphorylates NFAT proteins, resulting in their subsequent translocation to the nucleus (2). Termination of NFAT signaling occurs upon declining calcium concentrations and phosphorylation of NFAT by kinases such as GSK-3 or CK1 (3,4). Cyclosporin A and FK506 are immunosuppressive drugs that inhibit calcineurin and thus retain NFAT proteins in the cytoplasm (5).

$303
400 µl
This Cell Signaling Technology antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated Sepharose® beads. Phospho-Akt Substrate (RXXS*/T*) (110B7E) Rabbit mAb (Sepharose® Bead Conjugate) is useful for the immunoprecipitation of phosphorylated Akt substrate proteins.
APPLICATIONS
REACTIVITY
All Species Expected, D. melanogaster, Mouse

Application Methods: Immunoprecipitation

Background: An important class of kinases, referred to as Arg-directed kinases or AGC-family kinases, includes cAMP-dependent protein kinase (PKA), cGMP-dependent protein kinase (PKG), protein kinase C, Akt, and RSK. These kinases share a substrate specificity characterized by Arg at position -3 relative to the phosphorylated Ser or Thr (1,2). Akt plays a central role in mediating critical cellular responses including cell growth and survival, angiogenesis, and transcriptional regulation (3-5). While a number of Akt substrates are known (such as GSK-3, Bad, and caspase-9) many important substrates await discovery. Akt phosphorylates substrates only at Ser/Thr in a conserved motif characterized by Arg at positions -5 and -3 (6). Phospho-Akt substrate-specific antibodies from Cell Signaling Technology are powerful tools for investigating the regulation of phosphorylation by Akt and other Arg-directed kinases, as well as for high throughput kinase drug discovery.

The PTMScan® Trypsin Digested Control Peptides I are produced from mouse liver tissue that has been lysed, reduced and alkylated, digested with trypsin, purified, and lyophilized. This is intended to be used as a control for PTMScan® kits. It should not be used for phosphorylated motifs that contain lysine or arginine residues within the context of the antibody motif.
The Lysine Methyltransferase Antibody Sampler Kit provides a fast and economical means to evaluate endogenous levels of lysine methyltransferases. The kit contains enough primary antibody to perform two western blot experiments per primary antibody.
$129
2 western blots
20 µl
$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Zap-70 (Tyr319)/Syk (Tyr352) (65E4) Rabbit mAb #2717.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: The Syk family protein tyrosine kinase Zap-70 is expressed in T and NK cells and plays a critical role in mediating T cell activation in response to T cell receptor (TCR) engagement (1). Following TCR engagement, Zap-70 is rapidly phosphorylated on several tyrosine residues through autophosphorylation and transphosphorylation by the Src family tyrosine kinase Lck (2-6). Tyrosine phosphorylation correlates with increased Zap-70 kinase activity and downstream signaling events. Expression of Zap-70 is correlated with disease progression and survival in patients with chronic lymphocytic leukemia (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: MRP3/ABCC3 belongs to the super family of ATP-binding cassette (ABC) transporters. It is a member of the MRP subfamily that is expressed in various organs including liver, gallbladder, small intestine, colon, kidney, and adrenal gland (1-3). MRP3 is involved in multi-drug resistance (1). It facilitates the efflux of organic anions including monoanionic bile acid and anti-cancer reagents such as etoposide and paclitaxel from liver and small intestine into blood (4-7). Expression of MRP3 is increased in the cholestatic human and rat liver, suggesting its role in cholehepatic and enterohepatic bile circulation and in protecting liver from toxic bile salts (2,8). MRP3 expression is also upregulated in people with Dubin-Johnson Syndrome (DJS) who lack functional MRP2 in the liver, which implicates the compensatory role of MRP3 in the absence of functional MRP2 (4).Elevated expression of MRP3 has been detected in various cancer types such as hepatocellular carcinomas, primary ovarian cancer, and adult acute lymphoblastic leukemia (ALL) (9-11). Overexpression of MRP3 was reported to be a prognostic factor in ALL and adult acute myeloid leukemia (AML) (11,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Glutathione peroxidase 1 (GPX1) is a cytosolic selenoprotein which reduces hydrogen peroxide to water (1). GPX1 is the most abundant and ubiquitous among the five GPX isoforms identified so far (2). It is an important component in the anti-oxidative defense in cells and is associated with a variety of disease conditions, such as colon cancer (3), coronary artery disease (4) and insulin resistance (1).

$122
20 µl
$303
200 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Bad is a proapoptotic member of the Bcl-2 family that promotes cell death by displacing Bax from binding to Bcl-2 and Bcl-xL (1,2). Survival factors, such as IL-3, inhibit the apoptotic activity of Bad by activating intracellular signaling pathways that result in the phosphorylation of Bad at Ser112 and Ser136 (2). Phosphorylation at these sites promotes binding of Bad to 14-3-3 proteins to prevent an association between Bad with Bcl-2 and Bcl-xL (2). Akt phosphorylates Bad at Ser136 to promote cell survival (3,4). Bad is phosphorylated at Ser112 both in vivo and in vitro by p90RSK (5,6) and mitochondria-anchored PKA (7). Phosphorylation at Ser155 in the BH3 domain by PKA plays a critical role in blocking the dimerization of Bad and Bcl-xL (8-10).