Microsize antibodies for $99 | Learn More >>

Product listing: GPX1 (C8C4) Rabbit mAb, UniProt ID P07203 #3286 to MARK2 Antibody, UniProt ID Q7KZI7 #9118

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Glutathione peroxidase 1 (GPX1) is a cytosolic selenoprotein which reduces hydrogen peroxide to water (1). GPX1 is the most abundant and ubiquitous among the five GPX isoforms identified so far (2). It is an important component in the anti-oxidative defense in cells and is associated with a variety of disease conditions, such as colon cancer (3), coronary artery disease (4) and insulin resistance (1).

$122
20 µl
$303
200 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Bad is a proapoptotic member of the Bcl-2 family that promotes cell death by displacing Bax from binding to Bcl-2 and Bcl-xL (1,2). Survival factors, such as IL-3, inhibit the apoptotic activity of Bad by activating intracellular signaling pathways that result in the phosphorylation of Bad at Ser112 and Ser136 (2). Phosphorylation at these sites promotes binding of Bad to 14-3-3 proteins to prevent an association between Bad with Bcl-2 and Bcl-xL (2). Akt phosphorylates Bad at Ser136 to promote cell survival (3,4). Bad is phosphorylated at Ser112 both in vivo and in vitro by p90RSK (5,6) and mitochondria-anchored PKA (7). Phosphorylation at Ser155 in the BH3 domain by PKA plays a critical role in blocking the dimerization of Bad and Bcl-xL (8-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation but has also been associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and referred to as autophagy-related (Atg) genes. Formation of the autophagosome involves a ubiquitin-like conjugation system in which Atg12 is covalently bound to Atg5 and targeted to autophagosome vesicles (4-6). This conjugation reaction is mediated by the ubiquitin E1-like enzyme Atg7 and the E2-like enzyme Atg10 (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Son of sevenless (SOS) was first identified in Drosophila as a guanine nucleotide exchange factor (GEF) for Ras acting downstream of the Sevenless receptor (1). Two closely related homologs of Drosophila SOS are found in mammalian cells: SOS1 and SOS2 (2). SOS1 consists of histone folds, Dbl (DH) and pleckstrin (PH) homology domains, a Ras exchange motif (REM), and Cdc25 homology and polyproline domains (3). SOS1 binds to GRB2, NCK, and other adaptor proteins, and plays an important role in ERK activation downstream of protein tyrosine kinase receptor (RTK). Research studies have identified mutations in the corresponding SOS1 gene of patients with Noonan syndrome, a developmental disorder characterized by short stature, facial dysmorphia, and congenital heart defects (4,5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: MEK1 and MEK2, also called MAPK or Erk kinases, are dual-specificity protein kinases that function in a mitogen activated protein kinase cascade controlling cell growth and differentiation (1-3). Activation of MEK1 and MEK2 occurs through phosphorylation of two serine residues at positions 217 and 221, located in the activation loop of subdomain VIII, by Raf-like molecules. MEK1/2 is activated by a wide variety of growth factors and cytokines and also by membrane depolarization and calcium influx (1-4). Constitutively active forms of MEK1/2 are sufficient for the transformation of NIH/3T3 cells or the differentiation of PC-12 cells (4). MEK activates p44 and p42 MAP kinase by phosphorylating both threonine and tyrosine residues at sites located within the activation loop of kinase subdomain VIII.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation but has also been associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and referred to as autophagy-related (Atg) genes. Formation of the autophagosome involves a ubiquitin-like conjugation system in which Atg12 is covalently bound to Atg5 and targeted to autophagosome vesicles (4-6). This conjugation reaction is mediated by the ubiquitin E1-like enzyme Atg7 and the E2-like enzyme Atg10 (7,8).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 555 fluorescent dye and tested in-house for immunofluorescent analysis in monkey cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated β-Actin (13E5) Rabbit mAb #4970.
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Pig, Rat

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Actin, a ubiquitous eukaryotic protein, is the major component of the cytoskeleton. At least six isoforms are known in mammals. Nonmuscle β- and γ-actin, also known as cytoplasmic actin, are predominantly expressed in nonmuscle cells, controlling cell structure and motility (1). α-cardiac and α-skeletal actin are expressed in striated cardiac and skeletal muscles, respectively; two smooth muscle actins, α- and γ-actin, are found primarily in vascular smooth muscle and enteric smooth muscle, respectively. These actin isoforms regulate the contractile potential of muscle cells (1). Actin exists mainly as a fibrous polymer, F-actin. In response to cytoskeletal reorganizing signals during processes such as cytokinesis, endocytosis, or stress, cofilin promotes fragmentation and depolymerization of F-actin, resulting in an increase in the monomeric globular form, G-actin (2). The ARP2/3 complex stabilizes F-actin fragments and promotes formation of new actin filaments (2). Research studies have shown that actin is hyperphosphorylated in primary breast tumors (3). Cleavage of actin under apoptotic conditions has been observed in vitro and in cardiac and skeletal muscle, as shown in research studies (4-6). Actin cleavage by caspase-3 may accelerate ubiquitin/proteasome-dependent muscle proteolysis (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Flow Cytometry, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The transcriptional intermediary factor 1 (TIF1) family represents a group of proteins with multiple histone-binding domains. In humans, this family comprises four proteins, TIF1α/TRIM24, TIF1β/TRIM28/KAP1, TIF1γ/TRIM33/Ectodermin, and TIF1δ/TRIM66, which are characterized by an amino-terminal tripartite motif (TRIM) domain consisting of a RING domain, two B boxes, a coiled-coil domain, and a carboxy-terminal PHD finger and bromodomain (1). Despite their similar overall structure, these proteins have diverse roles in transcriptional regulation. TIF1α functions as a ligand-dependent nuclear receptor coregulator and more recently has been implicated in regulating p53 stability (2). TIF1β is an intrinsic component of the N-CoR1 corepressor complex and the NuRD nucleosome-remodeling complex (3) and functions as a corepressor for Kruppel-associated box (KRAB) zinc-finger transcription factors (4). Furthermore, TIF1β promotes heterochromatin-mediated gene silencing formation by serving as a cofactor for heterochromatin protein HP1 (5). TIF1δ expression is restricted to the testis and has been shown to interact with HP1γ (6).

$305
400 µl
This Cell Signaling Technology (CST) antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated Sepharose® beads. His-Tag (27E8) Mouse mAb (Sepharose® Bead Conjugate) is useful for immunoprecipitation assays.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Immunoprecipitation

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Pig

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Protein kinase D2 (PKD2) is one of three members of the protein kinase D family, including PKD1/PKCμ and PKD3/PKCν, that belong to the calcium/calmodulin superfamily of serine/threonine protein kinases (1,2). PKDs contain a conserved, carboxy-terminal catalytic domain, an amino-terminal regulatory region hallmarked by a PH domain that coordinates subcellular localization, and two zinc-finger/C1 lipid-binding domains that mediate activation of the enzyme in response to diacylglycerol (DAG) or phorbol ester (2,3). In addition to lipid-mediated activation, PKD catalytic activity can also be stimulated via phosphorylation of critical serine residues within the activation loop of the enzyme (4-8). Novel PKCs, such as PKCη and PKCε, have been shown to phosphorylate PKD1 at Ser744 and Ser748 (Ser706 and Ser710 in human PKD2), resulting in alleviation of autoinhibition of the enzyme mediated by PH domain interactions with the catalytic domain (5). Phosphorylation and activation of PKD isoforms has also been described for other upstream kinases. For example, casein kinase 2 (CK2) has been shown to phosphorylate PKD2 at Ser244, which promotes nuclear accumulation of PKD2, phosphorylation of HDAC7, and expression of Nur77 (9). Although only a handfull of PKD2 effectors have been identified, PKD2 has been implicated in regulating an array of cellular events, including cell survival, development, growth, migration, and transformation (10-14). PKD2-mediated phosphorylation of at least one known substrate, phosphatidylinositol 4-kinase type IIIβ (PI4KIIIβ), also implicates PKD2 in the formation and regulation of exocytotic transport vesicles from the trans Golgi network (15).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Translation repressor protein 4E-BP1 (also known as PHAS-1) inhibits cap-dependent translation by binding to the translation initiation factor eIF4E. Hyperphosphorylation of 4E-BP1 disrupts this interaction and results in activation of cap-dependent translation (1). Both the PI3 kinase/Akt pathway and FRAP/mTOR kinase regulate 4E-BP1 activity (2,3). Multiple 4E-BP1 residues are phosphorylated in vivo (4). While phosphorylation by FRAP/mTOR at Thr37 and Thr46 does not prevent the binding of 4E-BP1 to eIF4E, it is thought to prime 4E-BP1 for subsequent phosphorylation at Ser65 and Thr70 (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Glutathione peroxidase 1 (GPX1) is a cytosolic selenoprotein which reduces hydrogen peroxide to water (1). GPX1 is the most abundant and ubiquitous among the five GPX isoforms identified so far (2). It is an important component in the anti-oxidative defense in cells and is associated with a variety of disease conditions, such as colon cancer (3), coronary artery disease (4) and insulin resistance (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CRYAB (αB-Crystallin) is a member of the small heat shock protein (sHSP also known as HSP20) family (1). This protein was initially found to be overexpressed in the eye lens, and later also detected at high levels in heart and skeletal muscle tissues (2,3). CRYAB functions mainly as a molecular chaperone, responding to stress by binding unfolded target proteins to prevent aggregation (4,5). Research studies have shown that elevated expression of CRYAB in neurological disease and stroke patients protects tissue and cells from damage under extreme stress, leading to the investigation of CRYAB as a potential therapeutic target (6-9). Researchers also found that expression of the missense mutation of CRYAB (R120G) in the mouse model causes cardiomyopathy due to abnormal desmin aggregation (10). At the molecular level, CRYAB is involved in multiple biological processes, such as inhibiting apoptosis by binding and inhibiting caspase and proapoptotic Bax and Bcl-xS protein functions (11,12), promoting angiogenesis by binding and stabilizing VEGF for secretion (13), and regulating cytoskeletal organization through association with actin filament, intermediate filament, and cardiac titin (14-16).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Insulin receptor substrate 1 (IRS-1) is one of the major substrates of the insulin receptor kinase (1). IRS-1 contains multiple tyrosine phosphorylation motifs that serve as docking sites for SH2-domain containing proteins that mediate the metabolic and growth-promoting functions of insulin (2-4). IRS-1 also contains over 30 potential serine/threonine phosphorylation sites. Ser307 of IRS-1 is phosphorylated by JNK (5) and IKK (6) while Ser789 is phosphorylated by SIK-2, a member of the AMPK family (7). The PKC and mTOR pathways mediate phosphorylation of IRS-1 at Ser612 and Ser636/639, respectively (8,9). Phosphorylation of IRS-1 at Ser1101 is mediated by PKCθ and results in an inhibition of insulin signaling in the cell, suggesting a potential mechanism for insulin resistance in some models of obesity (10).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated p38 MAPK (D13E1) XP® Rabbit mAb #8690.
APPLICATIONS
REACTIVITY
Bovine, Hamster, Human, Monkey, Mouse, Pig, Rat

Application Methods: Flow Cytometry

Background: p38 MAP kinase (MAPK), also called RK (1) or CSBP (2), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (1-4). Four isoforms of p38 MAPK, p38α, β, γ (also known as Erk6 or SAPK3), and δ (also known as SAPK4) have been identified. Similar to the SAPK/JNK pathway, p38 MAPK is activated by a variety of cellular stresses including osmotic shock, inflammatory cytokines, lipopolysaccharide (LPS), UV light, and growth factors (1-5). MKK3, MKK6, and SEK activate p38 MAPK by phosphorylation at Thr180 and Tyr182. Activated p38 MAPK has been shown to phosphorylate and activate MAPKAP kinase 2 (3) and to phosphorylate the transcription factors ATF-2 (5), Max (6), and MEF2 (5-8). SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-imidazole) is a selective inhibitor of p38 MAPK. This compound inhibits the activation of MAPKAPK-2 by p38 MAPK and subsequent phosphorylation of HSP27 (9). SB203580 inhibits p38 MAPK catalytic activity by binding to the ATP-binding pocket, but does not inhibit phosphorylation of p38 MAPK by upstream kinases (10).

$489
96 assays
1 Kit
The PathScan® Total Estrogen Receptor α Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of estrogen receptor α protein. An Estrogen Receptor α Rabbit mAb has been coated onto the microwells. After incubation with cell lysates, both phospho- and nonphospho-estrogen receptor α proteins are captured by the coated antibody. Following extensive washing, an Estrogen Receptor α Mouse Detection mAb is added to detect captured estrogen receptor α proteins. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of absorbance for the developed color is proportional to the quantity of estrogen receptor α protein.Antibodies in the kit are custom formulations specific to the kit.
REACTIVITY
Human

Background: Estrogen receptor α (ERα), a member of the steroid receptor superfamily, contains highly conserved DNA binding and ligand binding domains (1). Through its estrogen-independent and estrogen-dependent activation domains (AF-1 and AF-2, respectively), ERα regulates transcription by recruiting coactivator proteins and interacting with general transcriptional machinery (2). Phosphorylation at multiple sites provides an important mechanism to regulate ERα activity (3-5). Ser104, 106, 118, and 167 are located in the amino-terminal transcription activation function domain AF-1, and phosphorylation of these serine residues plays an important role in regulating ERα activity. Ser118 may be the substrate of the transcription regulatory kinase CDK7 (5). Ser167 may be phosphorylated by p90RSK and Akt (4,6). According to the research literature, phosphorylation at Ser167 may confer tamoxifen resistance in breast cancer patients (4).

$325
200 assays, 96 well format
1 Kit
The Cellular Glutathione Detection Assay Kit employs the cell permeable dye monochlorobimane (MCB) to detect reduced glutathione (GSH) in cellular assays. MCB displays a high affinity for reduced glutathione and exhibits a very low fluorescent yield when free in solution. Upon binding to GSH, the dye exhibits a strong blue fluorescence that can be measured at an excitation wavelength of 380 nm and an emission wavelength of 460 nm. Fluorescent intensity correlates with sample GSH level. This kit can be used to either label cells directly or to detect GSH level in cell extracts. The assay can be easily applied in high throughput plate-format, flow cytometry, or fluorescent imaging.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Flow Cytometry

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rap1 and Rap2 belong to the Ras subfamily of small GTPases and are activated by a wide variety of stimuli through integrins, receptor tyrosine kinases (RTKs), G-protein coupled receptors (GPCR), death domain associated receptors (DD-R) and ion channels (1,2). Like other small GTPases, Rap activity is stimulated by guanine nucleotide exchange factors (GEF) and inactivated by GTPase activating proteins (GAP). A wide variety of Rap GEFs have been identified: C3G connects Rap1 with RTKs through adaptor proteins such as Crk, Epacs (or cAMP-GEFs) transmit signals from cAMP, and CD-GEFs (or CalDAG-GEFs) convey signals from either or both Ca2+ and DAG (1). Rap1 primarily regulates multiple integrin-dependent processes such as morphogenesis, cell-cell adhesion, hematopoiesis, leukocyte migration and tumor invasion (1,2). Rap1 may also regulate proliferation, differentiation and survival through downstream effectors including B-Raf, PI3K, RalGEF and phospholipases (PLCs) (1-4). Rap1 and Rap2 are not fuctionally redundant as they perform overlapping but distinct functions (5). Recent research indicates that Rap2 regulates Dsh subcellular localization and is required for Wnt signaling in early development (6).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in mouse cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-MEK1/2 (Ser 221) (166F8) Rabbit mAb #2338.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: MEK1 and MEK2, also called MAPK or Erk kinases, are dual-specificity protein kinases that function in a mitogen activated protein kinase cascade controlling cell growth and differentiation (1-3). Activation of MEK1 and MEK2 occurs through phosphorylation of two serine residues at positions 217 and 221, located in the activation loop of subdomain VIII, by Raf-like molecules. MEK1/2 is activated by a wide variety of growth factors and cytokines and also by membrane depolarization and calcium influx (1-4). Constitutively active forms of MEK1/2 are sufficient for the transformation of NIH/3T3 cells or the differentiation of PC-12 cells (4). MEK activates p44 and p42 MAP kinase by phosphorylating both threonine and tyrosine residues at sites located within the activation loop of kinase subdomain VIII.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin)

Background: DPP4 (CD26) is a type II transmembrane glycoprotein expressed ubiquitously in most tissues and different cell types (1,2). The protein has a short cytoplasmic domain, transmembrane domain, a flexible stalk fragment and extracellular fragment (2). Both the catalytic peptide hydrolase domain and the beta-propeller ligand binding domain are located in the extracellular fragment (2). DPP4 is a multifunctional protein that exists in both a membrane bound form as well as an extracellular soluble form. As a peptidase, it removes N-terminal dipeptides sequentially from proteins with a proline or alanine as the penultimate P1 amino acid (3.4). DPP4 has been shown to cleave a wide range of substrates including GLP-1, BNP, substance P, etc. It is also involved in the regulation of related biological functions (5). In addition to it peptidase activity, DPP4 interacts with multiple important cell surface ligands, such as adenosine deaminase, fibronectin, and IGF2 receptor to influence processes like T cell activation, cell migration and proliferation (5). Several DPP4 inhibitors have been developed and their effects have been tested in the field of diabetes, cardiovascular disease and tumor immunity (2,5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD133, also known as Prominin, was first described as a cell surface marker recognized by monoclonal antibody AC133 on putative hematopoietic stem cells (1). Subsequent cDNA cloning indicated that CD133 is a five-transmembrane protein with a predicated molecular weight of 97 kDa. Due to heavy glycosylation, its apparent molecular weight is 130 kDa as determined by SDS-PAGE analysis (2). Besides blood stem cells, CD133 is expressed on and used to isolate other stem cells, including cancer stem cells (3-7). A deletion mutation in CD133 produces aberrant protein localization and may result in retinal degeneration in humans (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: PTK7 (CCK4) is a non-active receptor tyrosine kinase originally identified in colon carcinoma cells (1). PTK7 functions in cell adhesion, cell migration, cell polarity, proliferation, actin cytoskeleton reorganization, and apoptosis to regulate embryogenesis, epithelial tissue organization, neuronal tube closure, neuronal crest formation, and axon guidance (2-5). PTK7 acts as a co-receptor in both the non-canonical (also known as the Wnt/planar cell polarity signaling) and the canonical Wnt signaling pathways (6). In the non-canonical Wnt pathway, PTK7 activates downstream signaling by direct interaction with RACK1 and recruitment of DSH into the membrane localized receptor complex (3,6,7). PTK7 exerts an inhibitory effect on canonical Wnt pathway signal transduction through competition for frizzled receptor binding at the membrane surface (8). PTK7 gene expression is regulated by Cdx (9), while protein stability is regulated by membrane associated proteinase degradation. PTK7 is targeted for proteolytic degradation and extracellular domain shedding by the metalloproteinases MMP14 and Adam17, leading to enhanced cell proliferatiion, migration, and facilitated cancer cell invasion (10,11). PTK7 has been shown to regulate other signaling pathways by functioning as a co-receptor with membrane receptors, such as Plexin A1 and VEGFR1 (12-14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: LIN28A and LIN28B are conserved, developmentally regulated RNA binding proteins that inhibit the processing and maturation of the let-7 family of miRNAs (1,2). The let-7 miRNAs have been implicated in repression of oncogenes such as Ras, Myc, and HMGA2 (3). It has recently been shown that upregulation of LIN28A and LIN28B in primary human tumors and human cancer cell lines is correlated with downregulation of let-7 miRNAs (4). LIN28 genes are reported to be involved in primordial germ cell development and germ cell malignancy (5). In addition, allelic variation in LIN28B is associated with regulating the timing of puberty in humans (6). Overexpression of LIN28A, in conjunction with Oct-4, Sox2, and Nanog, can reprogram human fibroblasts to pluripotent, ES-like cells (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The mTORC1 kinase complex is a critical regulator of cell growth (1,2). Its activity is modulated by energy levels, growth factors, and amino acids via signaling through Akt, MAPK, and AMPK pathways (3,4). Recent studies found that the four related GTPases, RagA, RagB, RagC, and RagD, interact with raptor within the mTORC1 complex (1,2). These interactions are both necessary and sufficient for mTORC1 activation in response to amino acid signals (1,2).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The Grb-associated binder (Gab) family is a family of adaptor proteins recruited by a wide variety of receptor tyrosine kinases (RTKs) such as EGFR, HGFR, insulin receptor, cytokine receptor and B cell antigen receptors. Upon stimulation of RTKs by their cognate ligand, Gab is recruited to the plasma membrane where it is phosphorylated and functions as a scaffold (1-4). Multiple tyrosine phosphorylation sites of Gab1 protein have been identified (5). Phosphorylation of Tyr472 regulates its binding to p85 PI3 kinase (6,7). Phosphorylation of Gab1 at Tyr307, Tyr373 and Tyr407 modulates its association to PLCγ (8). Phosphorylation of Tyr627 and Tyr659 is required for Gab1 binding to and activation of the protein tyrosine phosphatase SHP2 (6,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Transketolase (TKT) is a homodimer in the pentose phosphate pathway (PPP) that catalyzes the interketol transfer between ketoses and aldoses (1,2). This enzyme, along with transaldolase, connects the nonoxidative branch of the PPP with glycolysis (1-3). Several regions of TKT are evolutionarily conserved from gram-negative bacteria to mammals (3). There is evidence that hypoxic (4) and non-hypoxic induction of HIF1-α (5) increases the expression of TKT. Because cancer cells rely on TKT in altered cell metabolism for nucleic acid synthesis, work has been done to develop inhibitors of TKT as novel cancer treatments (5-8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Bim/Bod is a pro-apoptotic protein belonging to the BH3-only group of Bcl-2 family members including Bad, Bid, Bik, Hrk, and Noxa that contain a BH3 domain but lack other conserved BH1 or BH2 domains (1,2). Bim induces apoptosis by binding to and antagonizing anti-apoptotic members of the Bcl-2 family. Interactions have been observed with Bcl-2, Bcl-xL, Mcl-1, Bcl-w, Bfl-1, and BHRF-1 (1,2). Bim functions in regulating apoptosis associated with thymocyte negative selection and following growth factor withdrawal, during which Bim expression is elevated (3-6). Three major isoforms of Bim are generated by alternative splicing: BimEL, BimL, and BimS (1). The shortest form, BimS, is the most cytotoxic and is generally only transiently expressed during apoptosis. The BimEL and BimL isoforms may be sequestered to the dynein motor complex through an interaction with the dynein light chain and released from this complex during apoptosis (7). Apoptotic activity of these longer isoforms may be regulated by phosphorylation (8,9). Environmental stress triggers Bim phosphorylation by JNK and results in its dissociation from the dynein complex and increased apoptotic activity.

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Acetyl-Histone H3 (Lys9) (C5B11) Rabbit mAb #9649.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Flow Cytometry

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: Max-like protein X (MLX), also known as transcription factor-like protein 4 (TCFL4), is a member of the Myc/Max/Mad network of transcriptional regulator proteins that share a common basic-helix-loop-helix zipper (bHLH-ZIP) motif required for dimerization and DNA-binding (1,2). MLX is ubiquitously expressed in most cell lines and functions as a binding partner for MLXIP (also known as MondoA) and MLXIPL (also known as ChREBP) (1,2). MLX/MLXIP and MLX/MLXIPL heterodimers function to regulate glucose homeostasis by sensing glucose metabolites in the cell. These heterodimeric protein complexes reside mainly in the cytoplasm and mitochondria of cells grown in low glucose, and translocate to the nucleus upon increased intracellular glucose levels to activate transcription of downstream target genes (1,2). MLX/MLXIP is required for the deregulated Myc-induced reprogramming of multiple metabolic pathways during oncogenesis (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Microtubule associated proteins regulate the stability of microtubules and control processes such as cell polarity/differentiation, neurite outgrowth, cell division and organelle trafficking (1). The MARK (MAP/microtubule affinity-regulating kinases) family (MARK1-4) of serine/threonine kinases was identified based on their ability to phosphorylate microtubule-associated proteins (MAPs) including tau, MAP2 and MAP4 (2-6). MARK proteins phosphorylate MAPs within their microtubule binding domains, causing dissociation of MAPs from microtubules and increased microtubule dynamics (2-4). In the case of tau, phosphorylation has been hypothesized to contribute to the formation of neurofibrillary tangles observed in Alzheimer's disease. Overexpression of MARK leads to hyperphosphorylation of MAPs, morphological changes and cell death (4). The tumor suppressor kinase LKB1 phosphorylates MARK and the closely related AMP-kinases within their T-loops, leading to increased activity (7).