Microsize antibodies for $99 | Learn More >>

Product listing: REDD1 Antibody, UniProt ID Q9NX09 #2516 to Ataxin-1 Antibody, UniProt ID P54253 #2177

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: REDD1 (REgulated in Development and DNA damage responses) expression is induced by hypoxia, cell stress, apoptosis and DNA damage. REDD1 is a transcriptional target of p53 and p63 following DNA damage, and links p63 to Ros (1). REDD1 functions as a negative regulator of mTOR in response to hypoxia in a tuberin-dependent manner (2). Depending on cell context, REDD1 can either be protecting or detrimental for cells under oxidative or ischemic stresses (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CARD9 is a caspase recruitment domain (CARD)-containing adaptor protein expressed by myeloid cells (1,2). It is required for antifungal immunity downstream of pathogen detection by C-type lectin receptors (CLRs) such as Dectin-1 (3,4). Recognition of carbohydrates on fungal cell walls by CLRs leads to activation of the tyrosine kinase Syk, followed by activation of PKCδ (5,6). PKCδ phosphorylates CARD9, enabling the assembly of a complex containing CARD9 and Bcl10 (6). This complex activates NF-κB, resulting in upregulation of inflammatory cytokines important for initiation of adaptive immunity (3,4,6,7). CARD9 was also shown to be important for the induction of IL-1β, downstream of the viral nucleic acid sensor RIG-I, as well as for the generation of reactive oxygen species important for bacterial killing by macrophages (2,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TATA-binding protein (TBP) is a ubiquitously expressed nuclear protein that functions at the core of the general transcription factor protein complex TFIID (1-3). TFIID, which contains TBP and 13 TBP-associated factors (TAFs), contributes to the formation of the transcription pre-initiation complex, an assembly of multiple protein complexes (TFIIA, TFIIB, TFIIE, TFIIF, TFIIH, and RNA polymerase II) that bind to a gene promoter during the initiation of transcription (1-3). Once the pre-initiation complex is formed, RNA polymerase II becomes competent for elongation and transcribes the body of a gene. TBP functions in the recruitment of TFIID by binding to the TATA-box sequence found approximately 25 base pairs upstream of the transcription start site of many protein-coding genes. In addition, many transcriptional activator proteins interact with TBP and various TAF proteins to facilitate recruitment of TFIID and formation of the pre-initiation complex.

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: LIN28A and LIN28B are conserved, developmentally regulated RNA binding proteins that inhibit the processing and maturation of the let-7 family of miRNAs (1,2). The let-7 miRNAs have been implicated in repression of oncogenes such as Ras, Myc, and HMGA2 (3). It has recently been shown that upregulation of LIN28A and LIN28B in primary human tumors and human cancer cell lines is correlated with downregulation of let-7 miRNAs (4). LIN28 genes are reported to be involved in primordial germ cell development and germ cell malignancy (5). In addition, allelic variation in LIN28B is associated with regulating the timing of puberty in humans (6). Overexpression of LIN28A, in conjunction with Oct-4, Sox2, and Nanog, can reprogram human fibroblasts to pluripotent, ES-like cells (7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The protein kinase C-related kinases (PRKs) are a subfamily of Ser/Thr-specific kinases with a catalytic domain highly homologous to the PKC family (1-3). They are effectors of Rho family GTPases (4-6) and are activated by fatty acids and phospholipids in vitro (7,8). Activation in vitro and in vivo involves the activation loop phosphorylation of PRK1 (Thr774)/PRK2 (Thr816) by PDK1 (9,10).

The Death Receptor Antibody Sampler Kit II provides an economical means to investigate members of the death receptor family. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: The tumor necrosis factor receptor family, which includes TNF-RI, TNF-R2, Fas, DR3, DR4, DR5, and DR6, plays an important role in the regulation of apoptosis in various physiological systems (1,2). The receptors are activated by a family of cytokines that include TNF, FasL, TWEAK, and TRAIL. They are characterized by a highly conserved extracellular region containing cysteine-rich repeats and a conserved intracellular region of about 80 amino acids termed the death domain (DD). The DD is important for transducing the death signal by recruiting other DD containing adaptor proteins (FADD, TRADD, RIP) to the death-inducing signaling complex (DISC) resulting in activation of caspases. The two receptors for TNF-α, TNF-R1 (55 kDa) and TNF-R2 (75 kDa) can mediate distinct cellular responses (3,4). In most cases cytotoxicity elicited by TNF has been reported to act through TNF-R1 (5,6). DR3/WSL-1/Apo-3/TRAMP/LARD is a TNFR family member containing the characteristic extracellular cysteine-repeats, transmembrane region, and an intracellular DD (7-11). DR3 is activated by its ligand Apo-3L/TWEAK to induce apoptosis and activation of NF-κB (12,13). Like TNF-R1, DR3 binds to the DD adaptor protein TRADD, which can then associate with other DD proteins like FADD and RIP as well as members of the TRAF family (7,8). Tissue expression of DR3 is very restricted, primarily seen on the surface of activated thymocytes and lymphocytes and plays an important role in thymocyte negative selection (7,8,14). Studies have also indicated an association with DR3 and rheumatoid arthritis (15,16). DR4 (TRAIL-RI, TNFRSF10A) and DR5 (TRAIL-R2, TNFRSF10B) are receptors for the cytokine TRAIL. Both receptors contain death domains that recruit DISC complexes triggering caspase activation and apoptosis (17-20). DR6, also known as TNFRSF21, is a TNFR family member able to induce apoptosis as well as activation of NF-κB and JNK (21). DR6 appears to play a critical role in the activation and differentiation of T and B lymphocytes (22,23). In the nervous system, β-amyloid precursor protein (APP) activates DR6 to trigger neuronal degeneration (24).

$118
10 western blots
100 µl
Nonphosphorylated Smad2/3 Control Cell Extracts: Total cell extracts from HT-1080 cells, serum-starved overnight to serve as a negative control. Supplied in SDS Sample Buffer.Phosphorylated Smad2/3 Control Cell Extracts: Total cell extracts from HT-1080 cells, serum-starved overnight and treated with 10 ng/ml hTGF-β3 #8425 for 30 min to serve as a positive control. Supplied in SDS Sample Buffer.
APPLICATIONS

Application Methods: Western Blotting

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Interferon regulatory factors (IRFs) comprise a family of transcription factors that function within the Jak/Stat pathway to regulate interferon (IFN) and IFN-inducible gene expression in response to viral infection (1). IRFs play an important role in pathogen defense, autoimmunity, lymphocyte development, cell growth, and susceptibility to transformation. The IRF family includes nine members: IRF-1, IRF-2, IRF-9/ISGF3γ, IRF-3, IRF-4 (Pip/LSIRF/ICSAT), IRF-5, IRF-6, IRF-7, and IRF-8/ICSBP. All IRF proteins share homology in their amino-terminal DNA-binding domains. IRF family members regulate transcription through interactions with proteins that share similar DNA-binding motifs, such as IFN-stimulated response elements (ISRE), IFN consensus sequences (ICS), and IFN regulatory elements (IRF-E) (2).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: In mammalian cells, the significance of histone H2B ubiquitination in chromatin epigenetics came from the identification of the budding yeast protein Bre1 (1,2). Together with the ubiquitin-conjugating enzyme Rad6, Bre1 serves as the E3 ligase in the monoubiquitination of the yeast histone H2B within transcribed regions of chromatin (1-3). Subsequently, the mammalian orthologs of yeast Bre1, RNF20 and RNF40, were identified (4,5). These two proteins form a tight heterodimer that acts as the major E3 ligase responsible for histone H2B monoubiquitination at Lys120 in mammalian cells, a modification linked to RNA Pol II-dependent transcription elongation in undamaged cells. Researchers have shown that DNA double-strand breaks (DSBs) are also capable of inducing monoubiquitination of H2B. This process depends upon the recruitment to DSB sites, as well as ATM-dependent phosphorylation of the RNF20-RNF40 heterodimer, thus highlighting a role for this E3 ligase in DSB repair pathways (6). Indeed, investigators have shown that loss of RNF20-RNF40 function promotes replication stress and chromosomal instability, which may constitute an early step in malignant transformation that precedes cell invasion (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$303
400 µl
This Cell Signaling Technology (CST) antibody is immobilized by the covalent reaction of hydrazinonicotinamide-modifed antibody with formylbenzamide-modified magnetic bead. Phospho-Tyrosine Mouse mAb (P-Tyr-100) (Magnetic Bead Conjugate) is useful for immunoprecipitation assays. The unconjugated Phospho-Tyrosine Mouse mAb (P-Tyr-100) #9411 reacts with all species of phospho-tyrosine protein. CST expects that Phospho-Tyrosine Mouse mAb (P-Tyr-100) (Magnetic Bead Conjugate) will also recognize phospho proteins in all species.
APPLICATIONS
REACTIVITY
All Species Expected, Human, Mouse, Rat

Application Methods: Immunoprecipitation

Background: Tyrosine phosphorylation plays a key role in cellular signaling (1). Research studies have shown that in cancer, unregulated tyrosine kinase activity can drive malignancy and tumor formation by generating inappropriate proliferation and survival signals (2). Antibodies specific for phospho-tyrosine (3,4) have been invaluable reagents in these studies. The phospho-tyrosine monoclonal antibodies developed by Cell Signaling Technology are exceptionally sensitive tools for studying tyrosine phosphorylation and monitoring tyrosine kinase activity in high throughput drug discovery.

PhosphoPlus® Duets from Cell Signaling Technology (CST) provide a means to assess protein activation status. Each Duet contains an activation-state and total protein antibody to your target of interest. These antibodies have been selected from CST's product offering based upon superior performance in specified applications.

Background: TBK1 (TANK-binding kinase 1)/NAK (NF-κB activating kinase) is an IκB kinase (IKK)-activating kinase and can activate IKK through direct phosphorylation (1). TBK1 was identified through association with the TRAF binding protein, TANK, and found to function upstream of NIK and IKK in the activation of NF-κB (2). TBK1 induces IκB degradation and NF-κB activity through IKKβ. TBK1 may mediate IKK and NF-κB activation in response to growth factors that stimulate PKCε activity (1). TBK1 plays a pivotal role in the activation of IRF3 in the innate immune response (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Granzymes are a family of serine proteases expressed by cytotoxic T lymphocytes and natural killer (NK) cells and are key components of immune responses to pathogens and transformed cells (1). Granzymes are synthesized as zymogens and are processed into mature enzymes by cleavage of a leader sequence. They are released by exocytosis in lysosome-like granules containing perforin, a membrane pore-forming protein. Granzyme B has the strongest apoptotic activity of all the granzymes as a result of its caspase-like ability to cleave substrates at aspartic acid residues thereby activating procaspases directly and cleaving downstream caspase substrates (2,3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Keratins (cytokeratins) are intermediate filament proteins that are mainly expressed in epithelial cells. Keratin heterodimers composed of an acidic keratin (or type I keratin, keratins 9 to 23) and a basic keratin (or type II keratin, keratins 1 to 8) assemble to form filaments (1,2). Keratin isoforms demonstrate tissue- and differentiation-specific profiles that make them useful as research biomarkers (1). Research studies have shown that mutations in keratin genes are associated with skin disorders, liver and pancreatic diseases, and inflammatory intestinal diseases (3-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 14-3-3 family of proteins plays a key regulatory role in signal transduction, checkpoint control, apoptotic and nutrient-sensing pathways (1,2). 14-3-3 proteins are highly conserved and ubiquitously expressed. There are at least seven isoforms, β, γ, ε, σ, ζ, τ, and η that have been identified in mammals. The initially described α and δ isoforms are confirmed to be phosphorylated forms of β and ζ, respectively (3). Through their amino-terminal α helical region, 14-3-3 proteins form homo- or heterodimers that interact with a wide variety of proteins: transcription factors, metabolic enzymes, cytoskeletal proteins, kinases, phosphatases, and other signaling molecules (3,4). The interaction of 14-3-3 proteins with their targets is primarily through a phospho-Ser/Thr motif. However, binding to divergent phospho-Ser/Thr motifs, as well as phosphorylation independent interactions has been observed (4). 14-3-3 binding masks specific sequences of the target protein, and therefore, modulates target protein localization, phosphorylation state, stability, and molecular interactions (1-4). 14-3-3 proteins may also induce target protein conformational changes that modify target protein function (4,5). Distinct temporal and spatial expression patterns of 14-3-3 isoforms have been observed in development and in acute response to extracellular signals and drugs, suggesting that 14-3-3 isoforms may perform different functions despite their sequence similarities (4). Several studies suggest that 14-3-3 isoforms are differentially regulated in cancer and neurological syndromes (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cofilin is an evolutionarily conserved, actin-binding protein that severs actin filaments during processes that rely on actin filament dynamics, including cytokinesis, cell migration, invasion, and neuronal development. Actin severing and filament depolymerization are regulated through the controlled cycling of cofilin between the phosphorylated and dephosphorylated forms (1). The kinases LIMK and TESK inactivate cofilin by phosphorylating it at Ser3 (2,3). The slingshot homologs (SSH1, SSH2 and SSH3) and chronophin/PDXP phosphatases remove phosphate from cofilin at Ser3, enabling cofilin binding to actin and filament depolymerization (3). LIMK and SSH1 regulate cofilin activity downstream of neuregulin signaling in Schwann cells (4).Slingshot homolog 1 (SSH1) can also dephosphorylate LIMK kinases, suppressing LIMK phosphorylation of cofilin (5). In addition, SSH1 modulates actin dynamics by stabilizing F-actin and promoting actin bundling independent of its cofilin phosphatase activity (6). SSH1 activity is regulated by phosphorylation and protein-protein interaction through various signaling pathways (1). Binding of SSH1 to F-actin stimulates its cofilin phosphatase activity (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: Mastermind-like (MAML) family of proteins are homologs of Drosophila Mastermind. The family is composed of three members in mammals: MAML1, MAML2, and MAML3 (1,2). MAML proteins form complexes with the intracellular domain of Notch (ICN) and the transcription factor CSL (RBP-Jκ) to regulate Notch target gene expression (3-5). MAML1 also interacts with myocyte enhancer factor 2C (MEF2C) to regulate myogenesis (6). MAML2 is frequently found to be fused with Mucoepidermoid carcinoma translocated gene 1 (MECT1, also know as WAMTP1 or TORC1) in patients with mucoepidermoid carcinomas and Warthin's tumors (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The methylation state of lysine residues in histone proteins is a major determinant of the formation of active and inactive regions of the genome and is crucial for proper programming of the genome during development (1,2). Jumonji C (JmjC) domain-containing proteins represent the largest class of potential histone demethylase proteins (3). The JmjC domain can catalyze the demethylation of mono-, di-, and tri-methyl lysine residues via an oxidative reaction that requires iron and α-ketoglutarate (3). Based on homology, both humans and mice contain at least 30 such proteins, which can be divided into 7 separate families (3). The jumonji domain-containing protein 2 (JMJD2) family, also known as the JmjC domain-containing histone demethylation protein 3 (JHDM3) family, contains four members: JMJD2A/JHDM3A, JMJD2B/JHDM3B, JMJD2C/JHDM3C, and JMJD2D/JHDM3D. In addition to the JmjC domain, these proteins also contain JmjN, PHD, and tudor domains, the latter of which has been shown to bind to methylated histone H3 at Lys4 and Lys9, and methylated histone H4 at Lys20 (4,5). JMJD2 proteins have been shown to demethylate di- and tri-methyl histone H3 at Lys9 and Lys36 and function as both activators and repressors of transcription (6-11). JMJD2A, JMJD2C, and JMJD2D function as coactivators of the androgen receptor in prostate tumor cells (7). In contrast, JMJD2A also associates with Rb and NCoR corepressor complexes and is necessary for transcriptional repression of target genes (8,9). JMJD2B antagonizes histone H3 Lys9 tri-methylation at pericentric heterochromatin (10). JMJD2C, also known as GASC1, is amplified in squamous cell carcinomas and metastatic lung carcinoma and inhibition of JMJD2C expression decreases cell proliferation (11,12). JMJD2C has also been identified as a downstream target of Oct-4 and is critical for the regulation of self-renewal in embryonic stem cells (13).

The Autophagy Vesicle Elongation (Atg12 Conjugation) Antibody Sampler Kit provides an economical means of detecting proteins related to autophagy vesicle elongation pathway. The kit contains enough antibody to perform two western blot experiments per primary antibody.
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: SUFU (Suppressor of Fused) was identified in Drosophila as a suppressor of the Fused (Fu) kinase that is essential for Hedgehog signaling during embryonic pattern formation (1). SUFU suppresses Hedgehog signaling by regulating the localization of the transcription factors Gli and Ci (2,3). In Drosophila, SUFU may also positively regulate Hedgehog signaling depending on SUFU protein levels and Hedgehog signal intensity (4). SUFU may function as a tumor suppressor as inactivation and loss of heterozygosity of SUFU is associated with human rhabdomyosarcomas and medulloblastomas (5,6). Deletion of SUFU in mice results in embryonic lethality, while heterozygotes exhibit developmental defects characteristic of basal cell nevus syndrome. This aberrant developmental pathway is attributed to ligand-independent activation of Hedgehog signaling (7). GSK-3β binds and phosphorylates SUFU in vitro and additional information predicts that GSK-3β may positively regulate Hedgehog signaling through modification of SUFU (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Microtubule associated proteins regulate the stability of microtubules and control processes such as cell polarity/differentiation, neurite outgrowth, cell division and organelle trafficking (1). The MARK (MAP/microtubule affinity-regulating kinases) family (MARK1-4) of serine/threonine kinases was identified based on their ability to phosphorylate microtubule-associated proteins (MAPs) including tau, MAP2 and MAP4 (2-6). MARK proteins phosphorylate MAPs within their microtubule binding domains, causing dissociation of MAPs from microtubules and increased microtubule dynamics (2-4). In the case of tau, phosphorylation has been hypothesized to contribute to the formation of neurofibrillary tangles observed in Alzheimer's disease. Overexpression of MARK leads to hyperphosphorylation of MAPs, morphological changes and cell death (4). The tumor suppressor kinase LKB1 phosphorylates MARK and the closely related AMP-kinases within their T-loops, leading to increased activity (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: Polycomb group (PcG) proteins contribute to the maintenance of cell identity, stem cell self-renewal, cell cycle regulation, and oncogenesis by maintaining the silenced state of genes that promote cell lineage specification, cell death, and cell-cycle arrest (1-4). PcG proteins exist in two complexes that cooperate to maintain long-term gene silencing through epigenetic chromatin modifications. The PRC2 (EZH2-EED) complex is recruited to genes by DNA-binding transcription factors and methylates histone H3 on Lys27. Methylation of Lys27 facilitates the recruitment of the PRC1 complex, which ubiquitinylates histone H2A on Lys119 (5). Suppressor of Zeste 12 (SUZ12) is an obligate component of the PRC2 complex, which together with EZH2 and EED is absolutely required for histone methyltransferase activity of the protein complex (6).The zinc finger AE binding protein 2 (AEBP2) is another integral component of the PRC2 complex. Addition of AEBP2 to the PRC2 core complex (EZH2-EED-SUZ12) enhances histone H3 Lys27 methyltransferase activity on nucleosomal substrates in vitro, which may be mediated in part by three AEBP2 DNA-binding zinc finger domains (5,7). AEBP2-mediated enhancement of enzymatic activity is greater on nucleosomal substrates that contain mono-ubiquitinated histone H2A Lys119, which suggests that AEBP2 may target PRC2 complexes in vivo through binding to DNA and mono-ubiquitinated histone H2A Lys119 (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 90 kDa ribosomal S6 kinases (RSK1-4) are a family of widely expressed Ser/Thr kinases characterized by two nonidentical, functional kinase domains (1) and a carboxy-terminal docking site for extracellular signal-regulated kinases (ERKs) (2). Several sites both within and outside of the RSK kinase domain, including Ser380, Thr359, Ser363, and Thr573, are important for kinase activation (3). RSK1-3 are activated via coordinated phosphorylation by MAPKs, autophosphorylation, and phosphoinositide-3-OH kinase (PI3K) in response to many growth factors, polypeptide hormones, and neurotransmitters (3).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry analysis in mouse cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Cox2 (D5H5) XP® Rabbit mAb #12282.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: Cyclooxygenase1 (Cox1) and cyclooxygenase2 (Cox2), family members with 60% homology in humans, catalyze prostaglandin production from arachidonic acid (1,2). While Cox1 expression is constitutive in most tissues, Cox2 expression is induced by lipopolysaccharide (LPS) and peptidoglycan (PGN) (3). PGN activates Ras, leading to phosphorylation of Raf at Ser338 and Erk1/2 at Tyr204. The activation of MAP kinase signaling results in subsequent activation of IKKα/β, phosphorylation of IκBα at Ser32/36, and NF-κB activation. Finally, activation of the transcription factor NF-κB is responsible for the induction of Cox2 expression (4). Investigators have shown that LPS and PGN induce the clinical manifestations of arthritis and bacterial infections, such as inflammation, fever, and septic shock (5). Research studies have indicated that Cox1 and Cox2 may also play a role in the neuropathology of Alzheimer's disease by potentiating γ-secretase activity and β-amyloid generation (6).

PTMScan® Phospho-Enrichment IMAC Fe-NTA Magnetic Beads employ immobilized metal affinity chromatography for capturing phosphorylated peptides. Negatively charged phosphate groups are attracted to the positively charged metal ions on the beads. In conjunction with liquid chromatography tandem mass spectrometry (LC-MS/MS), this approach enables researchers to isolate, identify, and quantitate large numbers of phosphorylated cellular peptides with a high degree of specificity and sensitivity, providing a global overview of phosphorylation in cell and tissue samples. For more information on PTMScan® Proteomics Services, please visit https://www.cellsignal.com/services/index.html.
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Importins belong to the karyopherin family of nuclear transport proteins (1) and are divided into two subgroups: importin α and importin β. Importins mainly function in nuclear protein import and export (2,3). Importin β1 (also known as karyopherin β1, Kpnβ1, Kpnb1, or p97) plays a key role in the nuclear import process (1-3). Nuclear import via importin β1 association with adaptor importin α (also known as karyopherin α, or Kpnα) is an essential component of the classical nuclear localization signal (NLS) pathway (4). Importin α directly recognizes the NLS present in the cargo target, prompting complex formation with importin β1. The cargo:importin α:importin β1 complex is transported across the nuclear pore complex (NPC) into the nucleus, where it is dissociated by the binding of RanGTP (1-4). Nuclear import directly via importin β1 can also occur by importin β1 recognition of the cargo protein, bypassing importin α involvement. In both cases, the importin β1/target protein interaction is mediated through the binding of importin β1 HEAT repeats with the target protein sequences (either the cargo protein itself or importin α) (5).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: AKAPs (A-kinase anchoring proteins), as their name implies, are a family of scaffolding proteins that bind regulatory subunits of Protein Kinase A (PKA) thus localizing PKA activity to distinct regions of the cell (1). Beyond a common amphipathic alpha-helix which is responsible for recruiting the PKA regulatory subunit (RIα, RIIα, RIβ, or RIIβ), individual AKAPs contain additional domains responsible for the recrutiment of additional signaling proteins (phosphodiesterases, phosphatases, cytoskeletal components, other kinase, etc.) or restricting the AKAP to a specific subcellular location (1). AKAP1, also known as AKAP149 in human, AKAP121 in rat, or D-AKAP in mouse is a dual-specificity AKAP which can bind to both RI and RII subunits of PKA with similar affinity (2,3). Originally thought to be predominantly restricted to the mitochondria, growing evidence suggests that localization of AKAP1 can be regulated in part by alternative splicing events and that AKAP1 may be present in the endoplasmic reticulum-nuclear envelope membrane network (4-6). Peri-nuclear localization, along with the fact that AKAP1 interacts with RNA via one of two nucleotide-binding domains (K homology (KH) and Tudor) have lead some to suggest that AKAP1 may play a role in RNA metabolism (7,8). In addition to PKA-RI and -RII, AKAP1 directly interacts with PP1 in a phosphorylation dependent manner and nucleates a complex containing PP2Ac, PKA and RSK1 which modulates RSK1 localization and activity (9-12).

$489
96 assays
1 Kit
The PathScan® Phospho-Lck (Tyr505) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of phospho-Lck (Tyr505). A phospho-Lck rabbit antibody has been coated onto the microwells. After incubation with cell lysates, phospho-Lck (Tyr505) is captured by the coated antibody. Following extensive washing, a Lck mouse detection mAb is added to detect the captured phospho-Lck (Tyr505). Anti-mouse, HRP-linked antibody is then used to recognize the bound detection antibody. The HRP substrate TMB is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of phospho-Lck (Tyr505).
REACTIVITY
Human

Background: Lck belongs to the Src-like non-receptor tyrosine kinase family with the typical Src family kinase structure: a unique amino terminal domain (Src homology 4 domain, SH4) followed by an SH3 domain, an SH2 domain, a kinase domain (SH1), and a carboxy-terminal negative regulatory domain (1). Lck activity is controlled by the interactions of SH2 and SH3 domains as well as tyrosine phosphorylation status of the activation loop (2,3). Lck is recruited to the T cell receptor (TCR) complex upon stimulation and activates downstream tyrosine kinases to initiate T cell signaling (4). Lck is also found to be involved in the regulation of mitochondrial apoptosis pathways and may be responsible for some anticancer drug induced apoptosis (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: FIH (Factor inhibiting HIF-1, HIF asparagine hydroxylase) is a dioxygen-dependent asparaginyl hydroxylase that modifies target protein function by hydroxylating target protein asparagine residues (1-3). Hypoxia-inducible factor (HIF), a transcriptional activator involved in control of cell cycle in response to hypoxic conditions, is an important target for FIH regulation. FIH functions as an oxygen sensor that regulates HIF function by hydroxylating at Asn803 in the carboxy-terminal transactivation domain (CAD) of HIF (4,5). During normoxia, FIH uses cellular oxygen to hydroxylate HIF-1 and prevent interaction of HIF-1 with transcriptional coactivators, including the CBP/p300-interacting transactivator. Under hypoxic conditions, FIH remains inactive and does not inhibit HIF, allowing the activator to regulate transcription of genes in response to low oxygen conditions (4-6). FIH activity is regulated in through interaction with proteins, including Siah-1, which targets FIH for proteasomal degradation (7). The Cut-like homeodomain protein CDP can bind the FIH promoter region to regulate FIH expression at the transcriptional level (8). Phosphorylation of HIF at Thr796 also can prevent FIH hydroxylation on Asn803 (9). Potential FIH substrates also include proteins with ankyrin repeat domains, such as Iκ-B, Notch, and ASB4 (10-12).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Mouse, Rat

Application Methods: Western Blotting

Background: Spinocerebellar ataxia 1 (SCA1), an autosomal dominant neurodegenerative disorder, is characterized by slurred speech, loss of limb coordination, and gait abnormalities resulting from the degeneration of cerebellar Purkinje cells and of a subset of brainstem neurons (1). Individuals with SCA1 have a highly polymorphic CAG repeat expansion encoding a polyglutamine tract in ataxin-1 (2). Akt phosphorylates ataxin-1 at Ser776, which regulates an association with 14-3-3. This interaction increases ataxin-1 stabilization and accumulation resulting in enhanced neurodegeneration (3). In addition, HSP70 controls the effect that phosphorylation has on ataxin-1 stability (4).