Microsize antibodies for $99 | Learn More >>

Product listing: TCF12/HEB (D2C10) Rabbit mAb, UniProt ID Q99081 #11825 to eRF1 Antibody, UniProt ID P62495 #13916

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TCF12/HEB (T cell factor 12/HeLa E-box binding protein) is a member of the E proteins that are type I basic helix-loop-helix domain containing transcription factors that bind directly to the E-box DNA consensus sequence and control numerous developmental processes (1,2). E protein family members include E2A, E2-2, and TCF12/HEB. TCF12/HEB forms homo- or heterodimers with other E proteins to regulate transcription of target genes that play a critical role in the development of T cells, B cells, and plasmacytoid dendritic cells (2-4). The TCF12/HEB gene has two transcriptional start sites leading to the generation of the long form called HEBCan, and the short form, HEBAlt (5). The two isoforms are thought to have distinct functions with HEBCan playing a role throughout T cell development, while HEBAlt functions in the efficient generation of T cell precursors (5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Optineurin is a signaling protein involved in maintenance of the Golgi complex, membrane trafficking, NF-κB, and interferon signaling. Mutations in the gene encoding optineurin have been associated with human diseases including glaucoma, Paget disease of bone, and amyotrophic lateral sclerosis (ALS) (1-2). Optineurin is thought to contribute to these pathologies through regulation of inflammatory signaling, autophagy, and mitophagy (1, 3). The NF-κB-activating kinase/TANK-binding kinase 1 (NAK/TBK1) phosphorylates optineurin at serine 177, regulating optineurin’s role in autophagy and mitophagy (4-6). The tumor suppressor HACE1 ubiquitylates optineurin, promoting the interaction of optineurin with the autophagy receptor p62/SQSTM1 (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: ABCC4 is a member of the ATP-binding Cassette (ABC) transporter family. ABC proteins transport various molecules across cellular membranes by utilizing the energy generated from ATP hydrolysis. There are seven subfamilies of ABC proteins: ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, and White (1). ABCC4 belongs to the MRP subfamily, which is involved in multi-drug resistance, hence it is also named MRP4. ABCC4 is widely expressed in tissues including prostate, kidney proximal tubules, astrocytes and capillary endothelial cells of the brain, platelets, and many cancer cell lines (2-4). ABCC4 mediates efflux transport of a wide variety of endogenous and xenobiotic organic anionic compounds (5). The diversity of substrates determines the biological functions of ABCC4. It regulates cAMP levels in human leukemia cells, thereby controlling the proliferation and differentiation of leukemia cells (6). ABCC4 also enables COX deficient pancreatic cancer cells to obtain exogenous prostaglandins (7). Research studies have shown that ABCC4 expression is elevated in drug resistant cancer cells, which makes it a potential target for cancer therapy (8,9). ABCC4 localizes to both plasma membrane and intracellular membranous structures (10). Investigators have also implicated ABCC4 in the pathogenesis of Kawasaki disease, a childhood genetic disorder characterized by vasculitis (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Bag1 belongs to the Bcl-2 associated athanogene (BAG) family of multifunctional proteins and was the first of six related proteins isolated from humans (1,2). This widely expressed protein interacts with a number of signaling molecules (including Bcl2, HGF receptor and Raf1) as it regulates signaling molecules in pathways involving cell survival, growth and differentiation. The most common role played by Bag1 protein is as an inhibitor of proteins favoring apoptosis (2-4). Bag1 also plays a role in Raf1 signaling and binds DNA as a transcription activator (4). Bag1 protein is a well-characterized inhibitor of its binding partner HSP70 (5). A conserved carboxy-terminal BAG domain within Bag1 interacts with the ATPase domain of HSP70 to negatively regulate heat shock protein chaperone activity (6,7). The multiple isoforms of Bag1 protein generated from a single transcript share a common ubiquitin homology domain and a carboxy-terminal Hsp70 binding region but differ in length and cellular localization. The 50 kDa long (Bag1-L) isoform also contains a nuclear localization signal and is often found in the nucleus where it activates transcription. The 46 kDa intermediate (Bag1-M) isoform is found mainly in the cytoplasm but can also translocate to the nucleus when associated with other proteins. The shorter 29-33 kDa isoforms (Bag1-S, Bag-1) isoforms are found primarily in the cytoplasm (8). High expression of the anti-apoptotic Bag1 protein correlates with increased survival in patients with particular forms of cancer, leading researchers to study possible therapeutic roles for Bag1 protein (9).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: IRAP (also known as LNPEP) was originally described as an insulin-responsive aminopeptidase found in Glut4-containing vesicles (1). It is essentially always in the same compartments as Glut4 and has identical insulin-stimulated translocation patterns as Glut4 (2). IRAP is therefore considered to be a surrogate marker for Glut4 (2). IRAP was later found to be a critical enzyme that regulates the expression and activity of several essential hormones and regulatory proteins, including the Glut4 transporter (3,4). This membrane associated, zinc-dependent cystinyl aminopeptidase acts as both a receptor for angiotensin IV as well as the enzyme that catalyzes the synthesis of this essential hormone from its angiotensinogen precursor (5). IRAP catalyzes the hydrolysis of several peptide hormones, including oxytocin and vasopressin (4). Abnormal IRAP expression or activity is associated with several forms of cancer in humans, including renal and endometrial cancers (6,7).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Stathmin is a ubiquitously expressed microtubule destabilizing phosphoprotein that is upregulated in a number of cancers. The amino terminus of the protein contains multiple phosphorylation sites and is involved in the promotion of tubulin filament depolymerization. Phosphorylation at these sites inactivates the protein and stabilizes microtubules. Ser16 phosphorylation by CaM kinases II and IV (1,2) increases during G2/M-phase and is involved in mitotic spindle regulation (3,4). Ser38 is a target for cdc2 kinase (5) and TNF-induced cell death gives rise to reactive oxygen intermediates leading to hyperphosphorylation of stathmin (6). EGF receptor activation of Rac and cdc42 also increases phosphorylation of stathmin on Ser16 and Ser38 (7). Other closely related family members are neuronally expressed and include SCG10, SCLIP, RB3 and its splice variants RB3' and RB3''. Stathmin and SCG10 have been shown to play roles in neuronal-like development in PC-12 cells (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Proteins in the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex are integral membrane proteins involved in vesicle transport and membrane fusion that pair vesicular SNAREs (v-SNAREs) with cognate target SNARE (t-SNARE) proteins (reviewed in 1,2). Vesicle-associated membrane protein 7 (VAMP7), or tetanus neurotoxin-insensitive VAMP (TI-VAMP), is a widely expressed v-SNARE involved in exocytosis of granules and synaptic vesicles in various cell types, membrane remodeling, neurite outgrowth, lysosomal secretion, and autophagosome maturation (3). Activity of VAMP7 can be regulated by c-Src-mediated tyrosine phosphorylation, which activates VAMP7-mediated exocytosis (4). VAMP7 activity can also be regulated through interaction with the guanine nucleotide exchange factor Varp (5,6). Several research studies indicate that VAMP7 plays an important role in neurite outgrowth as well as potential neurological activities, including anxiety (7-9). VAMP7 also appears to have a key role in T-cell activation by facilitating the recruitment of vesicular Lat to the immunological synapse (10). The VAMP7 protein interacts with ATG16L, a component of the ATG5-ATG12 complex, and regulates autophagosome maturation through homotypic fusion of ATG16L1 vesicles (11).

$131
1 ml
This Cell Signaling Technology antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated Sepharose® beads. Anti-rabbit IgG F(ab') 2 Fragment (Sepharose® Bead Conjugate) is useful for the immunoprecipitation of antibodies raised in rabbit.
APPLICATIONS

Application Methods: Immunoprecipitation

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Malate dehydrogenase (MDH) is a key enzyme in the tricarboxylic acid cycle and malate/aspartate shuttle (1,2). MDH is widely expressed in organisms from most bacteria to all eukaryotes (2). The cytoplasmic MDH isoenzyme (cMDH or MDH1) primarily reduces oxaloacetate to malate in the malate/aspartate shuttle (1-3). The major function of the mitochondrial MDH isoenzyme (mMDH or MDH2) is to oxidize malate to oxaloacetate in the tricarboxylic acid cycle (1,2).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-SAMHD1 (Thr592) (D7O2M) Rabbit mAb #89930.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: SAM domain and HD domain-containing protein 1 (SAMHD1) is a negative regulator of the cell-intrinsic innate immune response (1). Research studies have identified mutations in SAMHD1 as a cause of Aicardi-Goutieres syndrome, an autoimmune disease characterized by elevated production of interferon-α and symptoms resembling congenital viral infection (1). SAMHD1 was identified as the restriction factor that renders most myeloid cells refractory to human immunodeficiency virus (HIV) infection (2-4). Expression of the viral protein Vpx in refractory cells targets SAMHD1 for ubiquitin-mediated degradation and relieves HIV restriction. SAMHD1 prevents autoimmunity and HIV infection by hydrolyzing intracellular deoxynucleoside triphosphates (dNTPs), thereby limiting inappropriate immune activation by self nucleic acid and inhibiting reverse transcription of the HIV genome (4-6).

Each control slide contains formalin fixed, paraffin-embedded LNCaP cells, both untreated and treated with PI3-Kinase inhibitor LY294002, that serve as a control for Phospho-Akt (Ser473) immunostaining. Western blot analysis was performed on extracts derived from the same cells to verify the efficacy of the LY942002 treatment.To be used with antibodies: 2855, 9644, 4060, 3787, 2938, 4691, 4685, 2920, 9323, 5482, 5196, 2997, 2691, 4858, 4857, 2211, 5364, 2217, 2317.

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: A20, also referred to as TNF-α-induced protein 3 (TNFAIP3), is cytokine-inducible protein that functions to inhibit apoptosis and activate NF-κB (1,2). It was first identified as a TNF-α inducible primary response gene in human umbilical vein endothelial cells, and encodes a 790-amino acid protein containing seven Cys2/Cys2-zinc finger motifs (3). Constitutive expression of A20 is observed in lymphoid tissues (4), but it is transiently expressed in a variety of cell types in response to inflammatory signals such as TNF-α (3,5), IL-1 (3,5), phorbol esters (6), and LPS (7). Expression of A20 can confer resistance to apoptosis and NF-κB activation triggered by these signals, probably through interference with TRAF (TNF receptor associated factor) family members (8,9), and interaction with the NF-κB inhibiting protein ABIN (10). Studies also show that A20 contains site-specific ubiquitin modifying activity that can contribute to its biological functions (11,12). The amino-terminus of A20 contains de-ubiquitinating (DUB) activity for Lys63 branches, such as those found in TRAF6 and RIP, while the carboxyl-terminus contains ubiquitin ligase (E3) activity for Lys48 branches of the same substrates and leads to their degradation (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CtBP2 (carboxy-terminal binding protein-2) and its homolog CtBP1 are transcriptional co-repressors originally identified as proteins that bind the carboxy-terminus of the human adenovirus E1A protein (1-3). CtBP proteins are thought to play important roles in regulating various developmental pathways because deletion of CtBP2 leads to embryonic lethality at E10.5 and is correlated with axial patterning defects (4). CtBP proteins regulate various oncogenic signaling pathways as promoters of epithelial-mesenchymal transition, apoptosis antagonists, and tumor suppressor genes repressors (1,5). The CtBP protein transcription co-repression activity results from interactions with numerous transcription factors and chromatin modulators, including the polycomb group proteins (1,6,7). Depending on the context, CtBP proteins interact with a short amino acid sequence motif (PXDLS) to mediate repression of target genes through both histone deacetylase-dependent and independent mechanisms (6,8,9). CtBP proteins display a high sequence homology to the bacterial D-isomer-specific 2-hydroxyacid dehydrogenase enzymes. Research studies indicate that nuclear NADH levels regulate CtBP transcription repression activities, as NADH binding is required for CtBP2 homodimerization and transcription co-repressor activity (6,9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Presenilin 1 and presenilin 2 are transmembrane proteins belonging to the presenilin family. Mutation of presenilin genes has been linked to early onset of Alzheimer disease, probably due to presenilin's associated γ-secretase activity for amyloid-β protein processing (1,2). Endogenous presenilin mainly exists in a heterodimeric complex formed from the endoproteolytically processed amino-terminal (34 kDa) and carboxy-terminal (~20, 22, 23 kDa) fragments (CTF) (2,3).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: TNFRSF8/CD30 is a type-I transmembrane glycoprotein that is a member of the TNFR superfamily. CD30 is synthesized as a precursor protein that undergoes extensive posttranslational modification before becoming embedded in the plasma membrane as a 120-kDa transmembrane protein (1,2). The expression of CD30 is upregulated in activated T-cells and may trigger costimulatory signaling pathways upon its engagement (3,4). While its expression is normally restricted to subsets of activated T-cells and B-cells, CD30 expression is robustly upregulated in hematologic malignancies, such as Hodgkin’s lymphoma (HL), anaplastic large cell lymphoma (ALCL), and adult T-cell leukemia, thus making it an attractive target for therapeutic intervention (5,6). Research studies have suggested that in certain disease contexts, CD30 recruits TRAF2 and TRAF5 adaptor proteins to drive NF-kappa B activation, aberrant cell growth, and cytokine production (7-9). CD30 signaling is also regulated by TACE-dependent proteolytic cleavage of its ectodomain, which results in reduced CD30L-dependent activation of CD30+ cells (10, 11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: E4BP4/NFIL3 is a basic leucine zipper transcriptional regulator that plays a variety of roles in the immune system (1). For example, E4BP4/NFIL3 is required for bone marrow-derived NK cell development (2,3). In addition, it regulates IgE class switching in B cells by controlling IL-4 dependent induction of germ-line ε (GLε) transcription (4). In macrophages, E4BP4/NFIL3 is induced following exposure to bacteria and negatively regulates transcription of IL-12 p40. E4BP4/NFIL3 also controls cytokine production by T cells. Th2 cells from E4BP4/NFIL3(-/-) mice produced elevated levels of IL-5 an IL-13, but reduced levels of IL-4 ad IL-10 (5,6). Chronically stimulated Th1 cells, regulatory T cells, and NKT cells from E4BP4/NFIL3(-/-) mice all produce reduced levels of IL-10 and IL-13 (6). Finally, E4BP4/NFIL3 is also required for the development of conventional CD8α+ dendritic cells, as this subset is absent from E4BP4/NFIL3(-/-) mice (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Hemoglobin (Hb, Hgb) is a heme-containing transport protein found primarily in the red blood cells of humans and most other vertebrates. The primary function of hemoglobin is to transport oxygen from the external environment to the body tissues. Hemoglobin also facilitates metabolic waste removal by assisting in the transport of carbon dioxide from tissues back to the respiratory organs (1). Mature hemoglobin is a tetrameric protein complex, with each subunit containing an oxygen-binding heme group (2). Multiple isoforms of hemoglobin exist, which vary in relative abundance depending on developmental stage. Adult hemoglobin (HbA) is comprised of two α subunits and two β subunits and is the predominant hemoglobin found in red blood cells of children and adults. Fetal hemoglobin (HbF) contains two α subunits and two γ subunits and is the predominant isoform found during fetal and early postnatal development (2,3). Mutations that alter the structure or abundance of specific globin subunits can result in pathological conditions known as hemoglobinopathies (4). One such disorder is sickle cell disease, which is characterized by structural abnormalities that limit the oxygen carrying capacity of red blood cells. By contrast, thalassemia disorders are characterized by deficiencies in the abundance of specific hemoglobin subunits (4). Clinical treatments that are designed to alter the expression of specific hemoglobin subunits can be used to treat hemoglobinopathies (5).

PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur. For more information on PTMScan® Proteomics Services, please visit www.cellsignal.com/services/index.html.

Background: Lysine is subject to a wide array of regulatory post-translational modifications due to its positively charged ε-amino group side chain. The most prevalent of these are ubiquitination and acetylation, which are highly conserved among prokaryotes and eukaryotes (1,2). Acyl group transfer from the metabolic intermediates acetyl-, succinyl-, malonyl-, glutaryl-, butyryl-, propionyl-, and crotonyl-CoA all neutralize lysine’s positive charge and confer structural alterations affecting substrate protein function. Lysine acetylation is catalyzed by histone acetyltransferases, HATs, using acetyl-CoA as a cofactor (3,4). Deacylation is mediated by histone deacetylases, HDACs 1-11, and NAD-dependent Sirtuins 1-7. Some sirtuins have little to no deacetylase activity, suggesting that they are better suited for other acyl lysine substrates (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The GRB7 family of adaptor proteins consist of GRB7, GRB10 and GRB14, which all contain an amino-terminal proline-rich SH3 binding domain, followed by PH, PBS, and SH2 domains. Each member of the family has several splice variants (1). It has been reported that GRB10 interacts with many receptor tyrosine kinases (RTKs) as well as downstream signal molecules including Raf, Akt, and Nedd4 (1,2). Although it was originally thought that GRB10 is exclusively phosphorylated at serine residues (3), Src kinase family members have been shown to phosphorylate GRB10 at Tyr67 (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase or PFKFB) catalyzes the synthesis and degradation of fructose 2,6-bisphosphate and regulates its steady-state level (1,2). Fructose 2,6-bisphosphate activates phosphofructokinase, a rate-limiting enzyme in glycolysis, by allosteric regulation (1,2). Four different PFKFB isoforms (PFKFB1, PFKFB2, PFKFB3, and PFKFB4) have been identified (1,2). Research studies indicate that amino acids activate PFKFB2 through Akt-dependent phosphorylation at Ser483 on PFKFB2 (3). In addition, androgen increases the expression of PFKFB2 in prostate cancer cells (4).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The human checkpoint protein Rad17 and its fission and budding yeast orthologues (Schizosaccharomyces pombe Rad17 and Saccharomyces cerevisiae Rad24, respectively) are involved in the activation of checkpoint signals in response to DNA damage or disruption of DNA synthesis (1-4). Treatment of human cells with genotoxic agents induces ATM/ATR-dependent phosphorylation of Rad17 at Ser635 and Ser645. Rad17 phosphorylation is a critical early event during checkpoint signaling in DNA-damaged cells (5-7).

$489
96 assays
1 Kit
The PathScan® Total Stat6 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of Stat6 protein. A Stat6 Mouse mAb has been coated onto the microwells. After incubation with cell lysates, Stat6 protein is captured by the coated antibody. Following extensive washing, a Stat6 Rabbit Dectection Antibody is added to detect captured Stat6 protein. Anti-rabbit IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of Stat6 protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse

Background: Upon activation by Janus kinases, Stat6 translocates to the nucleus where it regulates cytokine-induced gene expression. Stat6 is activated via phosphorylation at Tyr641 and is required for responsiveness to IL-4 and IL-13 (1-4). In addition, Stat6 is activated by IFN-α in B cells, where it forms transcriptionally active complexes with Stat2 and p48 (5,6). Protein phosphatase 2A is also involved in regulation of IL-4-mediated Stat6 signaling (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: SH2-containing inositol phosphatase 1 (SHIP1) is a hematopoietic phosphatase that hydrolyzes phosphatidylinositol-3,4,5-triphosphate to phosphatidylinositol-3,4-bisphosphate (1). SHIP1 is a cytosolic phosphatase with an SH2 domain in its amino terminus and two NPXY Shc binding motifs in its carboxy terminus (1,2). Upon receptor cross-linking, SHIP is first recruited to the membrane junction through binding of its SH2 domain to the phospho-tyrosine in the ITIM motif (2), followed by tyrosine phosphorylation on the NPXY motif (2). The membrane relocalization and phosphorylation on the NPXY motif is essential for the regulatory function of SHIP1 (3-5). Its effect on calcium flux, cell survival, growth, cell cycle arrest, and apoptosis is mediated through the PI3K and Akt pathways (3-5). Tyr1021 is located in one of the NPXY motifs in SHIP1, and its phosphorylation is important for SHIP1 function (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Nucleolin is a multi-functional protein that is one of the major components of the nucleoli (1). Nucleolin plays an essential role in various steps of ribosome biogenesis including rRNA synthesis, processing of pre-rRNA, pre-ribosomal RNA assembly, and transport of ribosomal proteins out of the nucleus (1-3). While the main function of nucleolin is ribosome biogenesis, it plays an important role in various other nuclear activities. Down regulation of nucleolin leads to increased expression of p53, defects in genome duplication, and a delay at prometaphase during mitosis leading to cell cycle arrest (4-6). In addition, nucleolin has been found in a complex with Rad51 and may participate in DNA repair by homologous recombination (7). Nucleolin binds to the catalytic subunit of the human telomerase reverse transcriptase, hTERT, and is thought to be involved in telomere maintenance (8). Nucleolin also possesses histone chaperone activity and is able to enhance the chromatin remodeling efficiency of SWItch/Sucrose Non Fermentable (SWI/SNF) and ATP-dependent chromatin-assembly factor (ACF), remove histone H2A-H2B dimers from nucleosomes, and facilitate the passage of RNA polymerase through chromatin (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: N-myc downstream-regulated gene 1 (NDRG1), also termed Cap43, Drg1, RTP/rit42, and Proxy-1, is a member of the NDRG family, which is composed of four members (NDRG1-4) that function in growth, differentiation, and cell survival (1-5). NDRG1 is ubiquitously expressed and highly responsive to a variety of stress signals including DNA damage (4), hypoxia (5), and elevated levels of nickel and calcium (2). Expression of NDRG1 is elevated in N-myc defective mice and is negatively regulated by N- and c-myc (1,6). During DNA damage, NDRG1 is induced in a p53-dependent fashion and is necessary for p53-mediated apoptosis (4,7). Research studies have shown that NDRG1 may also play a role in cancer progression by promoting differentiation, inhibiting growth, and modulating metastasis and angiogenesis (3,4,6,8,9). Nonsense mutation of the NDRG1 gene has been shown to cause hereditary motor and sensory neuropathy-Lom (HMSNL), which is supported by studies demonstrating the role of NDRG1 in maintaining myelin sheaths and axonal survival (10,11). NDRG1 is up-regulated during mast cell maturation and its deletion leads to attenuated allergic responses (12). Both NDRG1 and NDRG2 are substrates of SGK1, although the precise physiological role of SGK1-mediated phosphorylation is not known (13). NDRG1 is phosphorylated by SGK1 at Thr328, Ser330, Thr346, Thr356, and Thr366. Phosphorylation by SGK1 primes NDRG1 for phosphorylation by GSK-3.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TTK (Mps1, PYT) is a cell cycle regulated dual specificity kinase present in rapidly proliferating tissues and cell lines (1-3). TTK localizes to kinetochores and centromeres and is an essential component of the mitotic spindle checkpoint as well as centrosome duplication (4-6). The mitotic checkpoint inhibits entry into anaphase until all chromosomes are attached to the spindle; inhibition of this process leads to genomic instability and tumorigenesis. Phosphorylation of the BLM helicase at Ser144 by TTK maintains chromosome stability during mitosis (7). Small molecule inhibitors of TTK can block the spindle checkpoint response, thereby making TTK a potential therapeutic target (8,9).TTK also participates in the DNA damage response by directly phosphorylating and activating the cell cycle checkpoint kinase Chk2 at Thr68. Two targets phosphorylated by Chk2 are the cell cycle phosphatase cdc25 and the transcription factor p53. Inactivation of cdc25 phosphatase results in the accumulation of inactive cyclin B and cell cycle arrest following DNA damage. Phosphorylation of p53 by active Chk2 stabilizes the transcription factor and promotes cell cycle arrest and apoptosis in response to DNA damage (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Pyruvate dehydrogenase (PDH) catalyzes decarboxylation of the glycolytic intermediate pyruvate to acetyl-CoA (1). Acetyl-CoA is further metabolized in the tricarboxylic acid (TCA) cycle to generate ATP and NADH (1). Pyruvate dehydrogenase kinase 1 (PDHK1) phosphorylates PDH to suppress its activity, while pyruvate dehydrogenase phosphatase 1 (PDP1) dephosphorylates PDH to enhance its activity (1). Phosphorylation of PDP1 at Tyr94 inhibits PDP1 and has been shown to be present in a variety of cancer cell lines and primary human leukemia cells (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Pig, Rat

Application Methods: Western Blotting

Background: Rap1 and Rap2 belong to the Ras subfamily of small GTPases and are activated by a wide variety of stimuli through integrins, receptor tyrosine kinases (RTKs), G-protein coupled receptors (GPCR), death domain associated receptors (DD-R) and ion channels (1,2). Like other small GTPases, Rap activity is stimulated by guanine nucleotide exchange factors (GEF) and inactivated by GTPase activating proteins (GAP). A wide variety of Rap GEFs have been identified: C3G connects Rap1 with RTKs through adaptor proteins such as Crk, Epacs (or cAMP-GEFs) transmit signals from cAMP, and CD-GEFs (or CalDAG-GEFs) convey signals from either or both Ca2+ and DAG (1). Rap1 primarily regulates multiple integrin-dependent processes such as morphogenesis, cell-cell adhesion, hematopoiesis, leukocyte migration and tumor invasion (1,2). Rap1 may also regulate proliferation, differentiation and survival through downstream effectors including B-Raf, PI3K, RalGEF and phospholipases (PLCs) (1-4). Rap1 and Rap2 are not fuctionally redundant as they perform overlapping but distinct functions (5). Recent research indicates that Rap2 regulates Dsh subcellular localization and is required for Wnt signaling in early development (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Efficient termination of mRNA translation in eukaryotes is dependent upon a complex of two polypeptide release factors, eRF1 and eRF3 (1). The eukaryotic translation termination factor 1 (eRF1, ETF1) structurally resembles tRNA, which allows it to participate in stop codon recognition as well as hydrolysis of the peptidyl-tRNA conjugate (2,3). The eRF1 protein contains three functionally distinct domains, including an amino-terminal domain that harbors discrete motifs that participate in stop codon recognition (4,5). Lysine hydroxylation within the amino-terminal domain is required for efficient termination of mRNA translation (6). The central region of eRF1 harbors a GGQ motif that facilitates hydrolysis of peptidyl-tRNA conjugates (7), while its carboxy terminus participates in eRF3 binding (8).