Microsize antibodies for $99 | Learn More >>

Product listing: TrkB (80G2) Rabbit mAb, UniProt ID Q16620 #4607 to MKL2/MRTF-B Antibody, UniProt ID Q9ULH7 #14613

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin)

Background: The family of Trk receptor tyrosine kinases consists of TrkA, TrkB, and TrkC. While the sequence of these family members is highly conserved, they are activated by different neurotrophins: TrkA by NGF, TrkB by BDNF or NT4, and TrkC by NT3 (1). Neurotrophin signaling through these receptors regulates a number of physiological processes, such as cell survival, proliferation, neural development, and axon and dendrite growth and patterning (1). In the adult nervous system, the Trk receptors regulate synaptic strength and plasticity. TrkA regulates proliferation and is important for development and maturation of the nervous system (2). Phosphorylation at Tyr490 is required for Shc association and activation of the Ras-MAP kinase cascade (3,4). Residues Tyr674/675 lie within the catalytic domain, and phosphorylation at these sites reflects TrkA kinase activity (3-6). Point mutations, deletions, and chromosomal rearrangements (chimeras) cause ligand-independent receptor dimerization and activation of TrkA (7-10). TrkA is activated in many malignancies including breast, ovarian, prostate, and thyroid carcinomas (8-13). Research studies suggest that expression of TrkA in neuroblastomas may be a good prognostic marker as TrkA signals growth arrest and differentiation of cells originating from the neural crest (10).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Vav proteins belong to the Dbl family of guanine nucleotide exchange factors (GEFs) for Rho/Rac small GTPases. The three identified mammalian Vav proteins (Vav1, Vav2 and Vav3) differ in their expression. Vav1 is expressed only in hematopoietic cells and is involved in the formation of the immune synapse. Vav2 and Vav3 are more ubiquitously expressed. Vav proteins contain the Dbl homology domain, which confers GEF activity, as well as protein interaction domains that allow them to function in pathways regulating actin cytoskeleton organization (reviewed in 1). Phosphorylation stimulates the GEF activity of Vav protein towards Rho/Rac (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: ATP-dependent chromatin remodeling complexes play an essential role in the regulation of nuclear processes such as transcription and DNA replication and repair (1,2). The SWI/SNF chromatin remodeling complex consists of more than 10 subunits and contains a single molecule of either BRM or BRG1 as the ATPase catalytic subunit. The activity of the ATPase subunit disrupts histone-DNA contacts and changes the accessibility of crucial regulatory elements to the chromatin. The additional core and accessory subunits play a scaffolding role to maintain stability and provide surfaces for interaction with various transcription factors and chromatin (2-5). The interactions between SWI/SNF subunits and transcription factors, such as nuclear receptors, p53, Rb, BRCA1, and MyoD, facilitate recruitment of the complex to target genes for regulation of gene activation, cell growth, cell cycle, and differentiation processes (1,6-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Elongator is a highly conserved transcription elongation factor complex that was first identified in yeast as part of the hyperphosphorylated RNA polymerase II (RNAPII) holoenzyme (1). The Elongator complex consists of 6 subunits, ELP1-6, and has been shown to have acetyltransferase activity (2). The acetylation targets of Elongator include histone H3, which is linked to the transcription elongation function of the complex, and α-tubulin, which is associated with regulation of migration and maturation of projection neurons (3-6).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: MTA1 (metastasis associated gene 1) was identified in a differential screening of a cDNA library of metastatic and nonmetastatic adenocarcinoma cell lines (1), and was subsequently found to be an integral member of the nucleosome remodeling and deacetylation (NuRD) complex (2,3). MTA1 expression is upregulated under hypoxic conditions and found to enhance angiogenesis through stabilization of HIF-1α (4,5). MTA1 is overexpressed in a wide range of human cancers, and its expression is associated with malignancy and tumor progression (6). MTA1 is an essential downstream effector of c-Myc transformation (7). Recently, MTA1 was demonstrated to play a role in DNA damage response (8,9).

Chaps Cell Extract Buffer can be used to lyse cells under nondenaturing conditions and is recommended for the preparation of cytoplasmic cell lysates to be used with our caspase signaling pathway antibodies (see Companion Products).
Each control slide contains formalin fixed, paraffin-embedded KYSE 450 cells, both untreated and treated with EGF, that serve as a control for Phospho-EGFR immunostaining. Western blot analysis was performed on extracts derived from the same cells to verify the efficacy of the EGF treatment.To be used with antibodies: 2235, 2237, 3777, 2236, 2234, 4404, 4407, 4267, 9411, 9417, 9416.

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The Drosophila piwi gene was identified as being required for the self-renewal of germline stem cells (1). Piwi homologs are well conserved among various species including Arabidopsis, C. elegans, and Homo sapiens (1). Both Miwi and Mili proteins are mouse homologs of Piwi and contain a C-terminal Piwi domain (2). Miwi and Mili bind to Piwi-interacting RNAs (piRNAs) in male germ cells and are essential for spermatogenesis in mice (3-5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Myc-Tag (71D10) Rabbit mAb #2278.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Flow Cytometry

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

$262
3 nmol
300 µl
SignalSilence® Atg5 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit Atg5 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation but has also been associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and referred to as autophagy-related (Atg) genes. Formation of the autophagosome involves a ubiquitin-like conjugation system in which Atg12 is covalently bound to Atg5 and targeted to autophagosome vesicles (4-6). This conjugation reaction is mediated by the ubiquitin E1-like enzyme Atg7 and the E2-like enzyme Atg10 (7,8).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Sox9 (D8G8H) Rabbit mAb #82630.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Sox9 is a transcription factor with an HMG-box DNA binding domain that has homology to the HMG domain of the mammalian testis-determining factor, SRY (1). Sox9 regulates several important processes during embryonic development including chondrogenesis, during which it contributes to skeletal formation and digit specification (2,3). Sox9 also coordinates with steroidogenic factor-1 to direct Sertoli cell-specific expression of anti-Mullerian hormone during embryogenesis, thereby contributing to male sex determination (4). In addition, Sox9 is reportedly involved in the maintenance of adult stem cell populations, including multipotent neural stem cells (5), hair follicle stem cells (6), and mammary stem cells (7). Recent interest has focused on the role of Sox9 in tumor biology. For example, research studies have shown that Sox9 expression in lung adenocarcinoma induces a mesenchymal phenotype in tumor cells (8). Other research studies have shown that YAP1 induced upregulation of Sox9 confers cancer stem cell like properties on esophageal cancer cells (9). Moreover, Sox9 expression has been linked with several other tumor types including ovarian, prostate, and pancreatic malignancies (10-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Erk3, also known as MAPK6 or p97 MAPK, is almost 50% identical to Erk1/2 at the kinase domain located in its amino-terminal region (1). However, Erk3 is distinguished from other MAP kinases in that it lacks the conserved TXY motif in its activation loop, possessing instead an SEG motif (1,2). Phosphorylation at Ser189 in the SEG motif has been reported (2,3). With limited information about its upstream kinases and downstream substrates, the significance of this phosphorylation remains to be elucidated (3,4). Erk3 is an inherently unstable protein, rapidly degraded through amino-terminal ubiquitination and proteasome degradation (3,5). A site-specific cleavage, depending on a short stretch of acidic residues of Erk3, might regulate its translocation from the Golgi/ERGIC to the nucleus during the cell cycle (6). Accumulating evidence suggests that Erk3 is involved in cell differentiation (1,3,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin), Western Blotting

Background: Stem cell factor (SCF) is a growth factor that is essential for hematopoiesis, melanogenesis and fertility. SCF is also known as mast cell growth factor (MCGF), steel factor (SLF), or kit ligand (KL) (1-3). SCF mediates its biological effects by binding to and activating c-Kit (4). SCF induces dimerization of c-Kit followed by trans-autophosphorylation of the cytoplasmic protein tyrosine kinase domain, leading to subsequent recruitment of signaling proteins, tyrosine phosphorylation of substrates and activation of multiple signaling pathways (5,6). SCF/c-Kit may take part in the growth control of human malignancies (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: DDX6, also known as RCK and p54, was identified as a proto-oncogene product and is a member of the ATP-dependent DEAD box helicase family (1,2). This protein interacts with translation initiation factor eIF4E in the cytoplasmic P-bodies (3) and represses mRNA translation (4). DDX6 is a component of the miRNA induced silencing complex (miRISC) and interacts with Argonaute 1 (Ago1) and Argonaute 2 (Ago2) proteins in vitro and in vivo (5), functioning in miRNA-mediated translational repression (5). Depletion of DDX6 leads to the disruption of cytoplasmic P-bodies indicating that it is required for P-body formation (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Glucose homeostasis is regulated by hormones and cellular energy status. Elevations of blood glucose during feeding stimulate insulin release from pancreatic β-cells through a glucose sensing pathway. Feeding also stimulates release of gut hormones such as glucagon-like peptide-1 (GLP-1), which further induces insulin release, inhibits glucagon release and promotes β-cell viability. CREB-dependent transcription likely plays a role in both glucose sensing and GLP-1 signaling (1). The protein CRTC2 (CREB-regulated transcription coactivator 2)/TORC2 (transducer of regulated CREB activity 2) functions as a CREB co-activator (2,3) and is implicated in mediating the effects of these two pathways (4). In quiescent cells, CRTC2/TORC2 is phosphorylated at Ser171 and becomes sequestered in the cytoplasm via an interaction with 14-3-3 proteins. Glucose and gut hormones lead to the dephosphorylation of CRTC2/TORC2 and its dissociation from 14-3-3 proteins. Dephosphorylated CRTC2/TORC2 enters the nucleus to promote CREB-dependent transcription. CRTC2/TORC2 plays a key role in the regulation of hepatic gluconeogenic gene transcription in response to hormonal and energy signals during fasting (5).CRTC2/TORC2-related proteins CRTC1/TORC1 and CRTC3/TORC3 also act as CREB co-activators (2,3). CRTC1/TORC1, CRTC2/TORC2 and CRTC3/TORC3 associate with the HTLV Tax protein to promote Tax-dependent transcription of HTLV-1 long terminal repeats (6,7). CRTC1/TORC1 is highly phosphorylated at Ser151 in mouse hypothalamic cells under basal conditions (8). When these cells are exposed to cAMP or a calcium activator, CRTC1/TORC1 is dephosphorylated and translocates into the nucleus (8). CRTC1/TORC1 is essential for energy balance and fertility (8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: In response to genomic stress, the ATR interacting protein (ATRIP) binds and is phosphorylated by the DNA damage-and checkpoint-activated kinase ATR (ataxia-telangiectasia mutated and rad3-related). Both ATR and ATRIP are integral for checkpoint signaling and are critical in the DNA repair response (1-3). Direct interaction between ATRIP and replication protein A (RPA) at RPA-coated, single-stranded DNA results in the recruitment of phosphorylated ATR/ATRIP to stalled replication forks and sites of DNA damage (3). ATR/ATRIP coordinate DNA repair and cell cycle progression in conjunction with key regulatory proteins, such as Rad17 and the 9-1-1 complex (4). ATR associated with ATRIP can also be stimulated by topoisomerase II binding protein (TOPBP1), suggesting that ATRIP may regulate both ATR localization and activity (5).

$561
96 assays
1 Kit
Next generation sequencing (NG-seq) is a high throughput method that can be used downstream of chromatin immunoprecipitation (ChIP) assays to identify and quantify target DNA enrichment across the entire genome. SimpleChIP® ChIP-seq Multiplex Oligos for Illumina® (Dual Index Primers) contains adaptors and primers that are ideally suited for multiplex sample preparation for NG-seq on the Illumina® platform. This kit can be used to generate up to 96 distinct, barcoded ChIP-seq DNA libraries that can be combined into a single sequencing reaction. This product provides enough reagents to support up to 96 DNA sequencing libraries, and must be used in combination with SimpleChIP® ChIP-seq DNA Library Prep Kit for Illumina® #56795.This product is compatible with SimpleChIP® Enzymatic ChIP Kit (Magnetic Beads) #9003, SimpleChIP® Plus Enzymatic ChIP Kit (Magnetic Beads) #9005, and SimpleChIP® Plus Sonication ChIP kit #56383. This product is not compatible with SimpleChIP® Enzymatic Chromatin IP Kit (Agarose Beads) #9002 and SimpleChIP® Plus Enzymatic Chromatin IP Kit (Agarose Beads) #9004 because agarose beads are blocked with sonicated salmon sperm DNA, which will contaminate DNA library preps and NG-seq.
REACTIVITY
All Species Expected

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to identify multiple proteins associated with a specific region of the genome, or the opposite, to identify the many regions of the genome bound by a particular protein (3-6). It can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors and DNA repair proteins. When performing the ChIP assay, cells or tissues are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. The chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or Quantitative Real-Time PCR can be used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing, or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 555 fluorescent dye and tested in-house for immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Sox2 (D6D9) XP® Rabbit mAb #3579.
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Embryonic stem cells (ESC) derived from the inner cell mass of the blastocyst are unique in their pluripotent capacity and potential for self-renewal (1). Research studies demonstrate that a set of transcription factors that includes Oct-4, Sox2, and Nanog forms a transcriptional network that maintains cells in a pluripotent state (2,3). Chromatin immunoprecipitation experiments show that Sox2 and Oct-4 bind to thousands of gene regulatory sites, many of which regulate cell pluripotency and early embryonic development (4,5). siRNA knockdown of either Sox2 or Oct-4 results in loss of pluripotency (6). Induced overexpression of Oct-4 and Sox2, along with additional transcription factors Klf4 and c-Myc, can reprogram both mouse and human somatic cells to a pluripotent state (7,8). Additional evidence demonstrates that Sox2 is also present in adult multipotent progenitors that give rise to some adult epithelial tissues, including several glands, the glandular stomach, testes, and cervix. Sox2 is thought to regulate target gene expression important for survival and regeneration of these tissues (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Members of the Toll-like receptor (TLR) family, named for the closely related Toll receptor in Drosophila, play a pivotal role in innate immune responses (1-4). TLRs recognize conserved motifs found in various pathogens and mediate defense responses (5-7). Triggering of the TLR pathway leads to the activation of NF-κB and subsequent regulation of immune and inflammatory genes (4). The TLRs and members of the IL-1 receptor family share a conserved stretch of approximately 200 amino acids known as the Toll/Interleukin-1 receptor (TIR) domain (1). Upon activation, TLRs associate with a number of cytoplasmic adaptor proteins containing TIR domains, including myeloid differentiation factor 88 (MyD88), MyD88-adaptor-like/TIR-associated protein (MAL/TIRAP), Toll-receptor-associated activator of interferon (TRIF), and Toll-receptor-associated molecule (TRAM) (8-10). This association leads to the recruitment and activation of IRAK1 and IRAK4, which form a complex with TRAF6 to activate TAK1 and IKK (8,11-14). Activation of IKK leads to the degradation of IκB, which normally maintains NF-κB in an inactive state by sequestering it in the cytoplasm.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Fanconi anemia (FA) is an autosomal recessive genetic disorder that results in chromosomal breakage, bone marrow failure, hypersensitivity to DNA cross-linking agents (such as mitomycin C), and a predisposition to cancer (1). The ubiquitously expressed FA complementation group A protein (FANCA, FAA) is a component of the FA nuclear complex that also contains FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, and FANCM. In response to DNA damage, the FA nuclear complex induces mono-ubiquitination of FANCD2 and FANCI (2). FANCJ/BRIP1, FANCD1/BRCA2 and FANCN/PALB2 are then recruited to sites of DNA damage along with other DNA repair proteins. FA signaling is important in maintenance of chromosome stability and control of mitosis (3).DNA-damage-dependent localization and stability of FANCA protein regulates FA complex function and localization. Interaction between FANCA protein and the Hsp90 chaperone protein regulates FANCA protein stability and turnover, and may play a role in controlling the FA DNA damage pathway (4). Mutations in the corresponding FANCA gene are responsible for the majority of cases of Fanconi anemia (5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric analysis of human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: The Syk family protein tyrosine kinase Zap-70 is expressed in T and NK cells and plays a critical role in mediating T cell activation in response to T cell receptor (TCR) engagement (1). Following TCR engagement, Zap-70 is rapidly phosphorylated on several tyrosine residues through autophosphorylation and transphosphorylation by the Src family tyrosine kinase Lck (2-6). Tyrosine phosphorylation correlates with increased Zap-70 kinase activity and downstream signaling events. Expression of Zap-70 is correlated with disease progression and survival in patients with chronic lymphocytic leukemia (7,8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The NF-κB/Rel transcription factors are present in the cytosol in an inactive state, complexed with the inhibitory IκB proteins (1-3). Most agents that activate NF-κB do so through a common pathway based on phosphorylation-induced, proteasome-mediated degradation of IκB (3-7). The key regulatory step in this pathway involves activation of a high molecular weight IκB kinase (IKK) complex whose catalysis is generally carried out by three tightly associated IKK subunits. IKKα and IKKβ serve as the catalytic subunits of the kinase and IKKγ serves as the regulatory subunit (8,9). Activation of IKK depends upon phosphorylation at Ser177 and Ser181 in the activation loop of IKKβ (Ser176 and Ser180 in IKKα), which causes conformational changes, resulting in kinase activation (10-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: The superfamily of phosphodiesterases (PDEs) catalyses the hydrolysis of 3',5'-cyclic nucleotides into the corresponding nucleotide 5'-monophosphates. PDE5 is a cGMP-specific enzyme that contains two cGMP binding sites in its amino-terminal regulatory domain (1). Elevation of cGMP levels causes activation of PKG, which phosphorylates PDE5 at Ser102 (2). Phosphorylation of PDE5 stimulates its enzymatic activity and enhances cGMP binding affinity in the regulatory domain, leading to a decrease in intracellular cGMP levels (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Glucocorticoid hormones control cellular proliferation, inflammation, and metabolism through their association with the glucocorticoid receptor (GR)/NR3C1, a member of the nuclear hormone receptor superfamily of transcription factors (1). GR is composed of several conserved structural elements, including a carboxy-terminal ligand-binding domain (which also contains residues critical for receptor dimerization and hormone-dependent gene transactivation), a neighboring hinge region containing nuclear localization signals, a central zinc-finger-containing DNA-binding domain, and an amino-terminal variable region that participates in ligand-independent gene transcription. In the absence of hormone, a significant population of GR is localized to the cytoplasm in an inactive form via its association with regulatory chaperone proteins, such as HSP90, HSP70, and FKBP52. On hormone binding, GR is released from the chaperone complex and translocates to the nucleus as a dimer to associate with specific DNA sequences termed glucocorticoid response elements (GREs), thereby enhancing or repressing transcription of specific target genes (2). It was demonstrated that GR-mediated transcriptional activation is modulated by phosphorylation (3-5). Although GR can be basally phosphorylated in the absence of hormone, it becomes hyperphosphorylated upon binding receptor agonists. It has been suggested that hormone-dependent phosphorylation of GR may determine target promoter specificity, cofactor interaction, strength and duration of receptor signaling, receptor stability, and receptor subcellular localization (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Friend leukemia integration 1 (FLI1) transcription factor is an ETS domain-containing transcription factor that plays an important and highly conserved role in vertebrate development, particularly hematopoiesis, where it functions to activate transcription of genes that promote erythroblast proliferation (1-4). In mice, the Fli1 locus is a common retroviral insertion site for the Friend murine leukemia virus (F-MuLV), such that a majority of F-MuLV-induced erythroleukemias are associated with aberrant Fli1 expression (5). Notably in humans, aberrant FLI1 expression has also been linked to poor prognosis in acute myeloid leukemia (6). Also in humans, a t(11;22)(q24;q12) chromosomal translocation has been described that generates a chimeric protein (EWS/FLI1) comprised of the amino-terminal transactivation domain of Ewing's sarcoma breakpoint region 1 (EWS) and the carboxy-terminal ETS domain of FLI1 (7). The EWS/FLI1 fusion protein functions as a transcriptional activator that is reportedly responsible for >85% of the known cases of pediatric Ewing’s sarcoma, an aggressive bone and soft tissue tumor (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Vacuole membrane protein 1 (VMP1, TMEM49) is a transmembrane protein localized to intracellular vacuoles that was originally described as a protein promoting vacuole formation in acinar cells associated with acute pancreatitis (1). Over-expression of VMP1 promotes vacuole formation and subsequent cell death (1). Additional research studies demonstrated that VMP1 expression might be induced by starvation or the mTOR inhibitor rapamycin, which triggers autophagy (2). VMP1 is targeted along with LC3 to autophagosome membranes (2). Knockdown of VMP1 can inhibit autophagosome formation (2). VMP1 interacts with beclin-1, a key autophagy protein that activates the class III PI3 kinase Vps34 (3). VMP1 functions in the degradation and clearance of zymogen-containing vacuoles during experimentally induced pancreatitis (4). During vacuole degradation and clearance, VMP1 interacts with the ubiquitin protease USP9X, suggesting a possible functional link between the molecular machinery of autophagy and the ubiquitin pathway. Orthologs of VMP1 from C. elegans (known as EPG-3), Drosophila (known as TANGO-5), and Dictyostelium, have been shown to play a role in membrane trafficking, organelle organization, and autophagy (5-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Sarcoplasmic and endoplasmic reticulum Ca2+ ATPases (SERCA) are members of a highly conserved family of Ca2+ pumps (1). SERCA pumps transport Ca2+ from the cytosol to the sarcoplasmic and endoplasmic reticulum lumen against a large concentration gradient (1). ATP2A1 (SERCA1) is a fast-twitch, skeletal muscle sarcoplasmic reticulum Ca2+ ATPase (2). Research studies have shown that mutations in the ATP2A1 gene cause an autosomal recessive muscle disorder known as Brody myopathy, which is characterized by muscle cramping and impaired muscle relaxation associated with exercise (1-3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The megakaryoblastic leukemia proteins 1 and 2 (MKL1, MKL2) are myocardin-related transcription factors (MRTF-A, MRTF-B) that serve as actin-regulated transcription coactivators for the serum response factor (SRF). Interaction between G-actin and MKL proteins retains the coactivator within the cytoplasm of resting cells. Activated Rho-A promotes F-actin assembly and a reduction of the G-actin pool in serum-stimulated cells. This results in the accumulation of MKL proteins in the nucleus, where the coactivator associates with the SRF to activate target gene transcription and mediate multiple cellular processes (1-4). A number of other signaling pathways, including the TGFβ, BMP, and PDGF pathways, also make use of MKL-mediated activation of target gene transcription (5-9). Chromosomal translocations involving the genes encoding MKL1 and MKL2 have been identified in several cases of acute megakaryoblastic leukemia and chondroid lipoma (10-12).