Microsize antibodies for $99 | Learn More >>

Product listing: Phospho-PDGF Receptor α (Tyr762) (D9B1N) Rabbit mAb, UniProt ID P16234 #24188 to Myosin IIc (D4A7) Rabbit mAb, UniProt ID Q7Z406 #8189

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Platelet derived growth factor (PDGF) family proteins exist as several disulphide-bonded, dimeric isoforms (PDGF AA, PDGF AB, PDGF BB, PDGF CC, and PDGF DD) that bind in a specific pattern to two closely related receptor tyrosine kinases, PDGF receptor α (PDGFRα) and PDGF receptor β (PDGFRβ). PDGFRα and PDGFRβ share 75% to 85% sequence homology between their two intracellular kinase domains, while the kinase insert and carboxy-terminal tail regions display a lower level (27% to 28%) of homology (1). PDGFRα homodimers bind all PDGF isoforms except those containing PDGF D. PDGFRβ homodimers bind PDGF BB and DD isoforms, as well as the PDGF AB heterodimer. The heteromeric PDGF receptor α/β binds PDGF B, C, and D homodimers, as well as the PDGF AB heterodimer (2). PDGFRα and PDGFRβ can each form heterodimers with EGFR, which is also activated by PDGF (3). Various cells differ in the total number of receptors present and in the receptor subunit composition, which may account for responsive differences among cell types to PDGF binding (4). Ligand binding induces receptor dimerization and autophosphorylation, followed by binding and activation of cytoplasmic SH2 domain-containing signal transduction molecules, such as GRB2, Src, GAP, PI3 kinase, PLCγ, and NCK. A number of different signaling pathways are initiated by activated PDGF receptors and lead to control of cell growth, actin reorganization, migration, and differentiation (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: XPB and XPD are ATPase/helicase subunits of the TFIIH complex that are involved in nucleotide excision repair (NER) to remove lesions and photoproducts generated by UV light (1). XPB and XPD are 3’-5’ and 5’-3’ DNA helicases, respectively, that play a role in opening of the DNA damage site to facilitate repair (2,3). XPB and XPD both play an important role in maintaining genomic stability, and researchers have linked mutations of these proteins to Xeroderma Pigmentosum (XP) and Trichothiodystrophy (TTD). XP patients have abnormalities in skin pigmentation and are highly susceptible to skin cancers, while TTD patients exhibit symptoms such as brittle hair, neurological abnormalities, and mild photosensitivity (4). In addition to their role in NER, XPB and XPD are involved in transcription initiation as part of the TFIIH core complex (5). The helicase activity of XPB unwinds DNA around the transcription start site to facilitate RNA polymerase II promoter clearance and initiation of transcription (6). XPD plays a structural role linking core TFIIH components with the cdk-activating kinase (CAK) complex that phosphorylates the C-terminus of the largest subunit of RNA polymerase II, leading to transcription initiation (7).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated CD68 (D4B9C) XP® Rabbit mAb #76437.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: CD68 (macrosialin) is a heavily glycosylated transmembrane protein that is expressed by and commonly used as a marker for monocytes and macrophages (1, 2). It is found on the plasma membrane, as well as endosomal and lysosomal membranes (1-3). It is proposed to bind OxLDL and has been observed as a homodimer (3, 4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin)

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Western Blotting

Background: Liver X receptors LXR-α and LXR-β are nuclear hormone receptor superfamily members responsible for regulating expression of target genes that control cholesterol transport and metabolism (1). When bound by the oxidized derivatives of cholesterol (oxysterols), activated LXR receptors function as sterol sensors to regulate transcription of the genes involved in the cholesterol homeostasis (1,2). The LXR-α protein is expressed at high levels in rat liver, kidney, intestine, adipose, and spleen; LXR-β is more ubiquitously expressed within rat tissues (1,3). Research studies indicate that glucose binds and up-regulates the transcriptional activity of LXR-α and LXR-β (4). LXR-α and LXR-β are putative glucose sensors that integrate glucose metabolism and fatty acid biosynthesis in the liver (4). Additional studies show that female mice deficient in LXR-β develop gallbladder cancer (5). In addition, LXR-β plays a role in protecting dopaminergic neurons in a Parkinson disease model (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Calcineurin binding protein CABIN1 was originally identified as an inhibitor of the calcium-dependent serine/threonine phosphatase, calcineurin. CABIN1 inhibits calcineurin signaling in T cells, regulating T cell receptor (TCR) signaling, transcription, and apoptosis (1-4). CABIN1 represses myocyte enhancer factor 2 (MEF2)-mediated transcription by recruiting chromatin remodeling enzymes (5), and also negatively regulates the activity of the tumor suppressor p53 (6). In response to genotoxic stress, CABIN1 is degraded and releases its inhibition of p53, allowing p53 to elicit cellular stress responses (7). CABIN1 is also involved in regulation of chromatin structure as part of the highly conserved HIRA/UBN1/CABIN1/ASF1A (HUCA) histone chaperone complex (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Bone morphogenetic proteins (BMPs) were first identified as molecules that can induce ectopic bone and cartilage formation (1,2). BMPs belong to the TGF-β superfamily, playing many diverse functions during development (3). BMPs are synthesized as precursor proteins and then processed by cleavage to release the C-terminal mature BMP. BMPs initiate signaling by binding to a receptor complex containing type I and type II serine/threonine receptor kinases that then phosphorylate Smad (mainly Smad1, 5, and 8), resulting in the translocation of Smad into the nucleus. BMP was also reported to activate MAPK pathways in some systems (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: SHank-Associated RH domain-interacting ProteIN (Sharpin), also known as SIPL1, is a highly conserved gene among many mammalian species and is ubiquitously expressed in various types of cells and tissues. Sharpin harbors multiple functional motifs including an amino terminal coiled-coil (CC) domain, which has been shown to mediate the interaction between sharpin and the scaffold protein shank (1). The other two domains, ubiquitin-like domain (UBL) and NPL4 zinc finger domain (NZF), facilitate ubiquitin-mediated protein recognition and degradation (2). Recent studies have shown that both UBL and NZF domains are essential for sharpin to exert its function in part through ubiquitin-mediated mechanisms (3-5). Although sharpin was initially identified as a scaffold protein within the postsynaptic density of neurons (1), recent studies have identified sharpin as a novel modulator of immune and inflammatory diseases. An emerging mechanistic model suggests that sharpin functions as an important adaptor component of the linear ubiquitin chain assembly complex (LUBAC) that modulates activation of the canonical NF-κB signaling pathway (3,4,6,7), thereby regulating cell survival and apoptosis, cytokine production, and development of lymphoid tissues. Indeed, mice with spontaneous mutations in the Sharpin gene develop chronic proliferative dermatitis that is characterized by eosinophilic inflammation of the skin and dysregulated development of lymphoid tissues (8).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Platelet derived growth factor (PDGF) family proteins exist as several disulphide-bonded, dimeric isoforms (PDGF AA, PDGF AB, PDGF BB, PDGF CC, and PDGF DD) that bind in a specific pattern to two closely related receptor tyrosine kinases, PDGF receptor α (PDGFRα) and PDGF receptor β (PDGFRβ). PDGFRα and PDGFRβ share 75% to 85% sequence homology between their two intracellular kinase domains, while the kinase insert and carboxy-terminal tail regions display a lower level (27% to 28%) of homology (1). PDGFRα homodimers bind all PDGF isoforms except those containing PDGF D. PDGFRβ homodimers bind PDGF BB and DD isoforms, as well as the PDGF AB heterodimer. The heteromeric PDGF receptor α/β binds PDGF B, C, and D homodimers, as well as the PDGF AB heterodimer (2). PDGFRα and PDGFRβ can each form heterodimers with EGFR, which is also activated by PDGF (3). Various cells differ in the total number of receptors present and in the receptor subunit composition, which may account for responsive differences among cell types to PDGF binding (4). Ligand binding induces receptor dimerization and autophosphorylation, followed by binding and activation of cytoplasmic SH2 domain-containing signal transduction molecules, such as GRB2, Src, GAP, PI3 kinase, PLCγ, and NCK. A number of different signaling pathways are initiated by activated PDGF receptors and lead to control of cell growth, actin reorganization, migration, and differentiation (5). Tyr751 in the kinase-insert region of PDGFRβ is the docking site for PI3 kinase (6). Phosphorylated pentapeptides derived from Tyr751 of PDGFRβ (pTyr751-Val-Pro-Met-Leu) inhibit the association of the carboxy-terminal SH2 domain of the p85 subunit of PI3 kinase with PDGFRβ (7). Tyr740 is also required for PDGFRβ-mediated PI3 kinase activation (8).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 700 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (197G2) Rabbit mAb #4377.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Mink, Monkey, Mouse, Pig, Rat, Zebrafish

Application Methods: Flow Cytometry

Background: Mitogen-activated protein kinases (MAPKs) are a widely conserved family of serine/threonine protein kinases involved in many cellular programs, such as cell proliferation, differentiation, motility, and death. The p44/42 MAPK (Erk1/2) signaling pathway can be activated in response to a diverse range of extracellular stimuli including mitogens, growth factors, and cytokines (1-3), and research investigators consider it an important target in the diagnosis and treatment of cancer (4). Upon stimulation, a sequential three-part protein kinase cascade is initiated, consisting of a MAP kinase kinase kinase (MAPKKK or MAP3K), a MAP kinase kinase (MAPKK or MAP2K), and a MAP kinase (MAPK). Multiple p44/42 MAP3Ks have been identified, including members of the Raf family, as well as Mos and Tpl2/COT. MEK1 and MEK2 are the primary MAPKKs in this pathway (5,6). MEK1 and MEK2 activate p44 and p42 through phosphorylation of activation loop residues Thr202/Tyr204 and Thr185/Tyr187, respectively. Several downstream targets of p44/42 have been identified, including p90RSK (7) and the transcription factor Elk-1 (8,9). p44/42 are negatively regulated by a family of dual-specificity (Thr/Tyr) MAPK phosphatases, known as DUSPs or MKPs (10), along with MEK inhibitors, such as U0126 and PD98059.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: The kindlin family of focal adhesion proteins is involved in multiple biological processes, including integrin signaling, adhesion, migration, angiogenesis, differentiation, and mitotic spindle formation (1,2). Kindlin family members 1, 2, and 3 (FERM1, FERM2, and URP2) are differentially expressed in tissues. Kindlin-1 is primarily expressed in epithelial cells, kindlin-2 is ubiquitously expressed, and kindlin-3 expression is restricted to the hematopoietic system (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: MNDA (myeloid cell nuclear differentiation antigen) is a transcription factor constitutively expressed in peripheral blood granulocytes and monocytes; low expression is also found in a subset of B cells (1,2). MNDA is a member of the interferon (IFN)-regulated 200 family of genes, which contain one or more copies of a partially conserved domain of 200 amino acid residues thought to mediate protein-protein interaction (3). MNDA may play a role in apoptosis and its expression is reduced in myelodysplastic syndromes (MDS) (4). MNDA has been proposed to be a marker for nodal marginal zone lymphoma (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Interleukin-2 (IL-2) is a T cell stimulatory cytokine best known for inducing T cell proliferation and NK cell proliferation and activation (1,2). IL-2 also promotes peripheral development of regulatory T cells (Tregs) (3,4). Conversely, IL-2 is involved in the activation-induced cell death (AICD) that is observed post T cell expansion by increasing levels of Fas on CD4+ T cells (5). The effects of IL-2 are mediated through a trimeric receptor complex consisting of IL-2Rα, IL-2Rβ, and the common gamma chain, γc (1,2). IL-2Rα binds exclusively to IL-2 with low affinity and increases the binding affinity of the whole receptor complex including IL-2Rβ and γc subunits. IL-15 also binds to IL-2Rβ (1,2). γc is used by other cytokines including IL-4, IL-7, IL-9, IL-15, and IL-21 (1,2). Binding of IL-2 initiates signaling cascades involving Jak1, Jak3, Stat5, and the PI3K/Akt pathways (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Nitric Oxide Synthase (NOS) catalyzes the formation of nitric oxide (NO) and citruline from L-arginine, oxygen and cofactors. Three family members have been characterized: neuronal NOS (nNOS), which is found primarily in neuronal tissue; inducible NOS (iNOS), which is induced by interferon gamma and lipopolysaccharides in the kidney and cardiovascular system; and endothelial NOS (eNOS), which is expressed in blood vessels (1). NO is a messenger molecule with diverse functions throughout the body including the maintenance of vascular integrity, homeostasis, synaptic plasticity, long-term potentiation, learning, and memory (2,3).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: CCAAT/enhancer-binding proteins (C/EBPs) are a family of transcription factors that are critical for cellular differentiation, terminal function, and inflammatory response (1). Six members of the family have been characterized (C/EBPα, β, δ, γ, ε, and ζ) and are distributed in a variety of tissues (1). Translation from alternative start codons results in two isoforms of C/EBPα (p42 and p30), which are both strong transcriptional activators (2). It has been reported that insulin and insulin-like growth factor-I stimulate the dephosphorylation of C/EBPα, which may play a key role in insulin-induced repression of GLUT4 transcription (3). Phosphorylation of C/EBPα at Thr222, Thr226, and Ser230 by GSK-3 seems to be required for adipogenesis (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: La-related protein 1 (LARP1) is a ubiquitously expressed RNA binding protein that promotes both global and specific mRNA translation in cells (1). LARP1 belongs to the La-related protein family and contains two RNA binding domains, a La motif (LAM), and a neighboring RNA recognition motif-like (RRM-L) domain (1). Research studies indicate that LARP1 acts downstream of mTORC1 to facilitate cell proliferation and growth by promoting global mRNA translation and translation of mRNAs containing a 5'Terminal Oligo-Pyrimidine (5'TOP) motif, which code for translational machinery components (2,3). At the molecular level, LARP1 associates with 5'TOP mRNAs and multiple translation machinery components to positively regulate translation (2,4). Additional studies show that LARP1 expression is upregulated in hepatocellular carcinoma (HCC) patients and that high LARP1 expression in HCC negatively correlates with survival rate (5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Apoptosis mediated by death factors like FasL and TNF-α involves the formation of a death-inducing signaling complex (DISC) to their respective receptors (1). Upon ligand activation to their receptors, Fas and TNF-R1 associate with death domain (DD) containing adaptor proteins FADD (Fas associated death domain) (2,3) and TRADD (TNF-R1 associated death domain) (4). In addition to its carboxy-terminal DD, FADD contains an amino-terminal death effector domain (DED) that binds to DEDs found on caspase-8 which leads to activation of this initiator caspase (5,6). Caspase-8 subsequently activates downstream effector caspases, like caspase-3, resulting in the cleavage of proteins involved in the execution of apoptosis. Unlike FADD, TRADD does not contain a DED (4). Apoptosis driven by TNF-R1 binding to TRADD involves association of TRADD and FADD which then leads to activation of caspase-8 (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Eg5 (also called kinesin-like protein 11 or Kif11) belongs to the kinesin-like family of motor proteins important in chromosome positioning, centrosome separation, and mitotic spindle formation. Phosphorylation of Eg5 by mitotic kinases regulates its activity by modulating its association with microtubules (1,2). Because anti-mitotic chemotherapeutic drugs, such as taxanes, target microtubules and have pleiotropic and sometimes toxic effects, drugs that target microtubule-associated proteins such as Eg5 are currently in development (3-5).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Histone H3 (Ser10) (D2C8) XP® Rabbit mAb #3377.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur. For more information on PTMScan® Proteomics Services, please visit www.cellsignal.com/common/content/content.jsp?id=ptmscan-services.
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: TRIBBLES proteins belong to a small family of serine-threonine kinase-like proteins characterized by the presence of a variant protein kinase motif (lacking a canonical ATP binding site), a MEK-1 binding site, and a C-terminal COP1 site that binds ubiquitin ligase. The tribbles gene was first identified and characterized in Drosophila genetic screens for genes that regulate cell division, gastrulation and oogenesis (1-3). Research studies in Drosophila suggested that Tribbles functions to coordinate cell division by regulating turnover of the cell cycle protein String/cdc25. In contrast to the Drosophila genome, which contains a single tribbles gene, the genomes of mice and humans encode three known TRIBBLES proteins (TRIB1-3), which exhibit both distinct and overlapping patterns of expression and functions (4). For example, TRIB1 and TRIB2, but not TRIB3, were reported to promote degradation of the basic region-leucine zipper transcription factor C/EBPα, a function that appears to be conserved from flies to humans (5,6). TRIB2 is overexpressed in a subset of human AML patient samples, down-regulated in leukemic cells undergoing proliferation arrest (7), and positively regulated by the NOTCH signaling pathway in T cells (8), while retroviral-mediated overexpression of Trib2 in mice was shown to induce transplantable leukemia (7). These finding collectively suggest that TRIB2 functions as an oncogene in the mammalian hematopoietic system (9).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: PBK/TOPK is a serine/threonine kinase that is phosphorylated and active during mitosis (1). PBK/TOPK is composed of kinase subdomains and a carboxy-terminal PDZ-Binding domain, which is thought to interact with the tumor suppressor protein hDlg (1). Increased PBK/TOPK expression has been observed in highly proliferative malignant cell lines, and PBK/TOPK expression is strongly downregulated during terminal differentiation of HL-60 leukemic cells (2,3). PMA-induced kinase activity toward PBK/TOPK has been observed (4), and cdc2/cyclinB has been shown to phosphorylate PBK/TOPK in vitro, presumably at Thr9 (1). Potential substrates of PBK/TOPK include p38 MAPK and c-Myc (3,4).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Type I insulin-like growth factor receptor (IGF-IR) is a transmembrane receptor tyrosine kinase that is widely expressed in many cell lines and cell types within fetal and postnatal tissues (1-3). Receptor autophosphorylation follows binding of the IGF-I and IGF-II ligands. Three tyrosine residues within the kinase domain (Tyr1131, Tyr1135, and Tyr1136) are the earliest major autophosphorylation sites (4). Phosphorylation of these three tyrosine residues is necessary for kinase activation (5,6). Insulin receptors (IRs) share significant structural and functional similarity with IGF-I receptors, including the presence of an equivalent tyrosine cluster (Tyr1146/1150/1151) within the kinase domain activation loop. Tyrosine autophosphorylation of IRs is one of the earliest cellular responses to insulin stimulation (7). Autophosphorylation begins with phosphorylation at Tyr1146 and either Tyr1150 or Tyr1151, while full kinase activation requires triple tyrosine phosphorylation (8).

PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur (1). For more information on PTMScan® Proteomics Services, please visit www.cellsignal.com/common/content/content.jsp?id=ptmscan-services.
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The DYRK family includes several dual-specificity tyrosine-phosphorylated and regulated kinases capable of phosphorylating proteins at both Tyr and Ser/Thr residues (1). The DYRK family was identified based on homology to the yeast Yak1 (2) and the Drosophila minibrain (mnb) kinases (3). Seven mammalian isoforms have been discovered, including DYRK1A, DYRK1B, DYRK1C, DYRK2, DYRK3, DYRK4, and DYRK4B. Differences in substrate specificity, expression, and subcellular localization are seen across the DYRK family (4,5). All DYRK proteins have a Tyr-X-Tyr motif in the catalytic domain activation loop; phosphorylation of the second Tyr residue (e.g. Tyr312 of DYRK1A) is necessary for kinase activity. DYRKs typically autophosphorylate the Tyr residue within their activation loop, but phosphorylate substrates at Ser and Thr residues (1,6).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin)

Background: Podoplanin (aggrus, glycoprotein 36) is a single-pass transmembrane protein belonging to the type-1 family of sialomucin-like glycoproteins. Podoplanin was first described in the rat as a surface glycoprotein that regulated podocyte morphology (1). It is now commonly used as a marker of lymphatic endothelial cells, where its expression is associated with the process of lymphangiogenesis (2). Its role in this regard is presumably due to its putative involvement in regulating actin cytoskeleton dynamics (3). Research studies have shown that podoplanin expression is upregulated in a number of tumor types including colorectal cancers (4), oral squamous cell carcinomas (5), and germ cell tumors (6), with higher expression levels often associated with more aggressive tumors (7). Research studies have suggested a functional role for podoplanin in the stromal microenvironment of tumors. For example, it has been reported that podoplanin expression in cancer-associated fibroblasts (CAFs) is positively associated with a stromal environment that promotes cancer progression (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Phosphatidylcholine-specific phospholipase D (PLD) hydrolyzes phosphatidylcholine (PC) to produce choline and phosphatidic acid (PA). PA is the precursor of the second messenger, diacylglycerol (DAG). Two isoforms of PLD (PLD1 and PLD2) have been identified so far. Both are regulated by protein kinases, small GTPases and Ca2+ (1). The PLD2 isoform is highly expressed in many cancers, such as colorectal and breast cancers (2,3). PLD2 also acts as a guanine nucleotide exchange factor for the small GTPase Rac2 independent of its phospholipase activity (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The sequences encoding antigen receptors are split into multiple germline segments which are then combined by a process called V(D)J recombination during immune cells development. A variable (V) segment is combined with a joining (J) segment, and in some cases a D (Diversity) segment, to create the antigen-binding portion of the receptor. The recombined V(D)J segment is then spliced into exons that encode the constant region to produce mature mRNA (1,2). This essential process required for the development of functional immune T and B cells creates a vast diversity in these receptors (3,4). Initiation of this process follows binding of RAG1 (recombination activating gene 1) and RAG2 to the conserved recombination signal sequences (RSS) and the introduction of a double-strand break between the RSS and the coding sequence (5,6). RAG1 and RAG2 genes are located immediately adjacent to each other in the genome and lack introns in their coding regions in many species. RAG1 and RAG2 are coexpressed only in the B and T cell lineages and both are required for cleavage activity (7). RAG1 and RAG2 can also function as transposases, contributing to chromosomal translocations and lymphoid malignancy (8,9). Mutations in the RAG genes are associated with a spectrum of combined immune deficiencies in humans (10,11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Nonmuscle myosin is an actin-based motor protein essential to cell motility, cell division, migration, adhesion, and polarity. The holoenzyme consists of two identical heavy chains and two sets of light chains. The light chains (MLCs) regulate myosin II activity and stability. The heavy chains (NMHCs) are encoded by three genes, MYH9, MYH10, and MYH14, which generate three different nonmuscle myosin II isoforms, IIa, IIb, and IIc, respectively (reviewed in 1). While all three isoforms perform the same enzymatic tasks, binding to and contracting actin filaments coupled to ATP hydrolysis, their cellular functions do not appear to be redundant and they have different subcellular distributions (2-5). The carboxy-terminal tail domain of myosin II is important in isoform-specific subcellular localization (6). Research studies have shown that phosphorylation of myosin IIa at Ser1943 contributes to the regulation of breast cancer cell migration (7).