Microsize antibodies for $99 | Learn More >>

Product listing: 14-3-3 η Antibody, UniProt ID Q04917 #9640 to EGF Receptor (D38B1) XP® Rabbit mAb (HRP Conjugate), UniProt ID P00533 #8504

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The 14-3-3 family of proteins plays a key regulatory role in signal transduction, checkpoint control, apoptotic and nutrient-sensing pathways (1,2). 14-3-3 proteins are highly conserved and ubiquitously expressed. There are at least seven isoforms, β, γ, ε, σ, ζ, τ, and η that have been identified in mammals. The initially described α and δ isoforms are confirmed to be phosphorylated forms of β and ζ, respectively (3). Through their amino-terminal α helical region, 14-3-3 proteins form homo- or heterodimers that interact with a wide variety of proteins: transcription factors, metabolic enzymes, cytoskeletal proteins, kinases, phosphatases, and other signaling molecules (3,4). The interaction of 14-3-3 proteins with their targets is primarily through a phospho-Ser/Thr motif. However, binding to divergent phospho-Ser/Thr motifs, as well as phosphorylation independent interactions has been observed (4). 14-3-3 binding masks specific sequences of the target protein, and therefore, modulates target protein localization, phosphorylation state, stability, and molecular interactions (1-4). 14-3-3 proteins may also induce target protein conformational changes that modify target protein function (4,5). Distinct temporal and spatial expression patterns of 14-3-3 isoforms have been observed in development and in acute response to extracellular signals and drugs, suggesting that 14-3-3 isoforms may perform different functions despite their sequence similarities (4). Several studies suggest that 14-3-3 isoforms are differentially regulated in cancer and neurological syndromes (2,3).

$327
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated antibody (Phospho-Histone H2A.X (Ser139) (20E3) Rabbit mAb #9718).
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Histone H2A.X is a variant histone that represents approximately 10% of the total H2A histone proteins in normal human fibroblasts (1). H2A.X is required for checkpoint-mediated cell cycle arrest and DNA repair following double-stranded DNA breaks (1). DNA damage, caused by ionizing radiation, UV-light, or radiomimetic agents, results in rapid phosphorylation of H2A.X at Ser139 by PI3K-like kinases, including ATM, ATR, and DNA-PK (2,3). Within minutes following DNA damage, H2A.X is phosphorylated at Ser139 at sites of DNA damage (4). This very early event in the DNA-damage response is required for recruitment of a multitude of DNA-damage response proteins, including MDC1, NBS1, RAD50, MRE11, 53BP1, and BRCA1 (1). In addition to its role in DNA-damage repair, H2A.X is required for DNA fragmentation during apoptosis and is phosphorylated by various kinases in response to apoptotic signals. H2A.X is phosphorylated at Ser139 by DNA-PK in response to cell death receptor activation, c-Jun N-terminal Kinase (JNK1) in response to UV-A irradiation, and p38 MAPK in response to serum starvation (5-8). H2A.X is constitutively phosphorylated on Tyr142 in undamaged cells by WSTF (Williams-Beuren syndrome transcription factor) (9,10). Upon DNA damage, and concurrent with phosphorylation of Ser139, Tyr142 is dephosphorylated at sites of DNA damage by recruited EYA1 and EYA3 phosphatases (9). While phosphorylation at Ser139 facilitates the recruitment of DNA repair proteins and apoptotic proteins to sites of DNA damage, phosphorylation at Tyr142 appears to determine which set of proteins are recruited. Phosphorylation of H2A.X at Tyr142 inhibits the recruitment of DNA repair proteins and promotes binding of pro-apoptotic factors such as JNK1 (9). Mouse embryonic fibroblasts expressing only mutant H2A.X Y142F, which favors recruitment of DNA repair proteins over apoptotic proteins, show a reduced apoptotic response to ionizing radiation (9). Thus, it appears that the balance of H2A.X Tyr142 phosphorylation and dephosphorylation provides a switch mechanism to determine cell fate after DNA damage.

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor ® 488 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: c-Kit is a member of the subfamily of receptor tyrosine kinases that includes PDGF, CSF-1, and FLT3/flk-2 receptors (1,2). It plays a critical role in activation and growth in a number of cell types including hematopoietic stem cells, mast cells, melanocytes, and germ cells (3). Upon binding with its stem cell factor (SCF) ligand, c-Kit undergoes dimerization/oligomerization and autophosphorylation. Activation of c-Kit results in the recruitment and tyrosine phosphorylation of downstream SH2-containing signaling components including PLCγ, the p85 subunit of PI3 kinase, SHP2, and CrkL (4). Molecular lesions that impair the kinase activity of c-Kit are associated with a variety of developmental disorders (5), and mutations that constitutively activate c-Kit can lead to pathogenesis of mastocytosis and gastrointestinal stromal tumors (6). Tyr719 is located in the kinase insert region of the catalytic domain. c-Kit phosphorylated at Tyr719 binds to the p85 subunit of PI3 kinase in vitro and in vivo (7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1,2). The p300/CBP histone acetyltransferases acetylate multiple lysine residues in the amino terminal tail of histone H2B (Lys5, 12, 15, and 20) at gene promoters during transcriptional activation (1-3). Hyper-acetylation of the histone tails neutralizes the positive charge of these domains and is believed to weaken histone-DNA and nucleosome-nucleosome interactions, thereby destabilizing chromatin structure and increasing the access of DNA to various DNA-binding proteins (4,5). In addition, acetylation of specific lysine residues creates docking sites that facilitate recruitment of many transcription and chromatin regulatory proteins that contain a bromodomain, which binds to acetylated lysine residues (6). Histone H2B is mono-ubiquitinated at Lys120 during transcriptional activation by the RAD6 E2 protein in conjunction with the BRE1A/BRE1B E3 ligase (also known as RNF20/RNF40) (7). Mono-ubiquitinated histone H2B Lys120 is associated with the transcribed region of active genes and stimulates transcriptional elongation by facilitating FACT-dependent chromatin remodeling (7-9). In addition, it is essential for subsequent methylation of histone H3 Lys4 and Lys79, two additional histone modifications that regulate transcriptional initiation and elongation (10). In response to metabolic stress, AMPK is recruited to responsive genes and phosphorylates histone H2B at Lys36, both at promoters and in transcribed regions of genes, and may regulate transcriptional elongation (11). In response to multiple apoptotic stimuli, histone H2B is phosphorylated at Ser14 by the Mst1 kinase (12). Upon induction of apoptosis, Mst1 is cleaved and activated by caspase-3, leading to global phosphorylation of histone H2B during chromatin condensation. Interestingly, histone H2B is rapidly phosphorylated at irradiation-induced DNA damage foci in mouse embryonic fibroblasts (13). In this case, phosphorylation at Ser14 is rapid, depends on prior phosphorylation of H2AX Ser139, and occurs in the absence of apoptosis, suggesting that Ser14 phosphorylation may have distinct roles in DNA-damage repair and apoptosis.

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Heme oxygenases (HMOX or HO) catalyze the rate-limiting step of the oxidative degradation of heme into iron, carbon monoxide, and biliverdin (1). Biliverdin is then converted to bilirubin (2). Heme is a strong pro-oxidant whereas bilirubin is a strong antioxidant (2). Research studies suggest disregulation of heme oxygenases may contribute to oxidative stress-related diseases (2). There are three isozymes of heme oxygenases: HMOX1/HO-1, HMOX2/HO-2, and HMOX3/HO-3 (1,2). HMOX1/HO-1 is inducible by heme and other stress stimuli (1,3). HMOX2/HO-2 and HMOX3/HO-3 are constitutively expressed (1,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Currently, there are five ubiquitin receptors associated with the proteasome: two proteasome subunits, Rpn10/S5a/PSMD4 and Rpn13/ADRM1 (Adhesion-regulating molecule 1), and three families of shuttling factors, Rad23, Dsk2, and Ddi1. ADRM1 is a ubiquitin receptor of the proteasome (1,2) that binds ubiquitin via a pleckstrin homology domain known as the pleckstrin-like receptor for ubiquitin (Pru) domain. The carboxy-terminal domain of mammalian ADRM1 serves to bind and enhance the isopeptidase activity of UCHL5/UCH37 (3-5), perhaps serving as a mechanism to accelerate ubiquitin chain disassembly. A murine Adrm1 knockout results in defective gametogenesis, thus highlighting a physiologic role for endogenous ADRM1 in mammalian development (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The mitochondrial flavoenzymes acyl-CoA dehydrogenases (ACADs) catalyze the α,β dehydrogenation of acyl-CoA esters (1). One of these enzymes, ACAD9, is essential for assembly of oxidative phosphorylation complex I (2). Studies have shown that ACAD9 gene mutations cause Complex I deficiency (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: PCPB2 (also known as hnRNP E2) is an RNA-binding protein that interacts in a sequence-specific fashion with single-stranded poly (rC). Through their poly(rC)-binding ability, PCBPs regulate mRNA stability and translation (1,2). PCBP2 is an iron chaperone; it delivers iron to ferritin for storage and mediates metalation of certain iron-containing proteins (3-5). PCBP2 interacts with the iron importer DMT1 (divalent metal transporter 1) and the iron exporter FPN1 (ferroportin 1) and regulates their activities (6,7). PCBP2 is induced by viral infection and targets MAVS for polyubiquitination and degradation (8-10). Recent reports demonstrate that it is involved in Hippo signaling, miRNA processing, immune suppression, and cancer (11-15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Similar to ubiquitin, NEDD8 is covalently linked to target proteins through an enzymatic cascade composed of NEDD8-specific E1 (activating)- and E2 (conjugating)-enzymes (1,2). The E2 ligase specific for NEDD8 is Ubc12 (3-5). Ubc12 forms a heterodimeric conjugate with NEDD8 in order to catalyze the transfer of NEDD8 from E1 to lysine side chains of target proteins (1,2). Well known targets of NEDD8 are cullin-based RING E3 ligases. Neddylation of cullin isoforms activates the related ubiquitin E3 complex by promoting its interaction with a cognate ubiquitin-E2 ligase (6-7). Neddylation of Cul-1 complexes containing βTrCP and SKP2 has been shown to be required for controlling the stability of important signaling targets such as IκB, NF-κB, and p27 Kip (8-10), thereby regulating cell cycle progression, signaling cascades, and developmental programming processes (11).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Calreticulin (D3E6) XP® Rabbit mAb #12238.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Calcium is a universal signaling molecule involved in many cellular functions such as cell motility, metabolism, protein modification, protein folding, and apoptosis. Calcium is stored in the endoplasmic reticulum (ER), where it is buffered by calcium binding chaperones such as calnexin and calreticulin, and is released via the IP3 Receptor channel (1). Calreticulin also functions as an ER chaperone that ensures proper folding and quality control of newly synthesized glycoproteins. As such, calreticulin presumably does not alter protein folding but regulates proper timing for efficient folding and subunit assembly. Furthermore, calreticulin retains proteins in non-native conformation within the ER and targets them for degradation (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Heterotrimeric guanine nucleotide-binding proteins (G proteins) consist of α, β and γ subunits and mediate the effects of hormones, neurotransmitters, chemokines, and sensory stimuli. To date, over 20 known Gα subunits have been classified into four families, Gα(s), Gα(i/o), Gα(q) and Gα(12), based on structural and functional similarities (1,2). Phosphorylation of Tyr356 of Gα(q)/Gα(11) is essential for activation of the G protein, since phenylalanine substitution for Tyr356 changes the interaction of Gα with receptors and abolishes ligand-induced IP3 formation (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: La-related protein 1 (LARP1) is a ubiquitously expressed RNA binding protein that promotes both global and specific mRNA translation in cells (1). LARP1 belongs to the La-related protein family and contains two RNA binding domains, a La motif (LAM), and a neighboring RNA recognition motif-like (RRM-L) domain (1). Research studies indicate that LARP1 acts downstream of mTORC1 to facilitate cell proliferation and growth by promoting global mRNA translation and translation of mRNAs containing a 5'Terminal Oligo-Pyrimidine (5'TOP) motif, which code for translational machinery components (2,3). At the molecular level, LARP1 associates with 5'TOP mRNAs and multiple translation machinery components to positively regulate translation (2,4). Additional studies show that LARP1 expression is upregulated in hepatocellular carcinoma (HCC) patients and that high LARP1 expression in HCC negatively correlates with survival rate (5).

$262
3 nmol
300 µl
SignalSilence® PTEN siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit PTEN expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: PTEN (phosphatase and tensin homologue deleted on chromosome ten), also referred to as MMAC (mutated in multiple advanced cancers) phosphatase, is a tumor suppressor implicated in a wide variety of human cancers (1). PTEN encodes a 403 amino acid polypeptide originally described as a dual-specificity protein phosphatase (2). The main substrates of PTEN are inositol phospholipids generated by the activation of the phosphoinositide 3-kinase (PI3K) (3). PTEN is a major negative regulator of the PI3K/Akt signaling pathway (1,4,5). PTEN possesses a carboxy-terminal, noncatalytic regulatory domain with three phosphorylation sites (Ser380, Thr382, and Thr383) that regulate PTEN stability and may affect its biological activity (6,7). PTEN regulates p53 protein levels and activity (8) and is involved in G protein-coupled signaling during chemotaxis (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Transformation/transcription domain-associated protein (TRRAP) is a highly conserved 434 kDa protein found in various multiprotein complexes, such as SAGA, PCAF, NuA4 and TIP60, which contain histone acetyltransferase (HAT) activity (1-4). TRRAP functions as an adaptor protein by binding directly to the transactivation domains of transcriptional activator proteins and facilitating the recruitment of HAT complexes to acetylate histone proteins and activate transcription (1-5). TRRAP is required for the transcriptional activation and cell transformation activities of c-Myc, E2F1, E2F4, p53 and the adenovirus E1A proteins (1,6,7). TRRAP is also essential in early development and is required at the mitotic checkpoint and for normal cell cycle progression (8,9). In addition, TRRAP has been shown to function in DNA repair. As part of the TIP60 complex, TRRAP is required for the acetylation of histone H4 at double-stranded DNA breaks and subsequent DNA repair by homologous recombination (10). In addition, TRRAP associates with the MRN (MRE11, RAD50, NBS1) complex, which lacks intrinsic HAT activity yet functions in the sensing and subsequent repair of double-stranded breaks by non-homologous DNA end-joining (11). TRRAP shows significant homology to the PI-3 kinase domain of the ATM family of kinases; however, amino acids that map to the catalytic site of the kinase domain are not conserved in TRRAP (1).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated CREB (48H2) Rabbit mAb #9197.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: CREB is a bZIP transcription factor that activates target genes through cAMP response elements. CREB is able to mediate signals from numerous physiological stimuli, resulting in regulation of a broad array of cellular responses. While CREB is expressed in numerous tissues, it plays a large regulatory role in the nervous system. CREB is believed to play a key role in promoting neuronal survival, precursor proliferation, neurite outgrowth, and neuronal differentiation in certain neuronal populations (1-3). Additionally, CREB signaling is involved in learning and memory in several organisms (4-6). CREB is able to selectively activate numerous downstream genes through interactions with different dimerization partners. CREB is activated by phosphorylation at Ser133 by various signaling pathways including Erk, Ca2+, and stress signaling. Some of the kinases involved in phosphorylating CREB at Ser133 are p90RSK, MSK, CaMKIV, and MAPKAPK-2 (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: SMARCA1 (SNF2L) is one of the two orthologs of the ISWI (imitation switch) ATPases encoded by the mammalian genome (1). The ISWI chromatin remodeling complexes were first identified in Drosophila and have been shown to remodel and alter nucleosome spacing in vitro (2). SMARCA1 is the catalytic subunit of the nucleosome remodeling factor (NURF) and CECR2-containing remodeling factor (CERF) complexes (3-5). The NURF complex plays an important role in neuronal physiology by promoting neurite outgrowth and regulation of Engrailed homeotic genes that are involved in neuronal development in the mid-hindbrain (3). NURF is also thought to be involved in the maturation of T cells from thymocytes by regulating chromatin structure and expression of genes important for T cell development (6). The largest subunit of the NURF complex, BPTF, is required for proper development of mesoderm, endoderm, and ectoderm tissue lineages, suggesting a role for SMARCA1 in the development of the germ layers in mouse embryo (7). Disruption of the CERF complex by deletion of CECR2, an interacting partner of SMARCA1, is associated with the neural tube defect exencephaly, linking the CERF complex with regulation of neurulation (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Voltage gated sodium channels are composed of a large alpha subunit and auxiliary beta subunits. The alpha subunit has 4 homologous domains, with each domain containing 6 transmembrane segments. These segments function as the voltage sensor and sodium permeable pore. Upon change of membrane potential, the sodium channel is activated, which allows sodium ions to flow through (1,2). When associated with beta subunits or other accessory proteins, the alpha subunit is regulated at the level of cell surface expression, kinetics, and voltage dependence (3,4).There are 9 mammalian alpha subunits, named Nav1.1-Nav1.9 (5). These alpha subunits differ in tissue specificity and biophysical functions (6,7). Seven of these subunits are essential for the initiation and propagation of action potentials in the central and peripheral nervous system while Nav1.4 and Nav1.5 are mainly expressed in skeletal muscle and cardiac muscle (8,9). Mutations in these alpha channel subunits have been identified in patients with epilepsy, seizure, ataxia, sensitivity to pain, and cardiomyopathy (reviewed in 10).

$303
400 µl
This Cell Signaling Technology antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated Sepharose® beads.Phospho-Tyrosine (P-Tyr-1000) Rabbit mAb (Sepharose® Bead Conjugate) is useful for the immunoprecipitation of phospho-tyrosine containing proteins and peptides. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Tyrosine (P-Tyr-1000) MultiMab™ Rabbit mAb mix #8954.
APPLICATIONS
REACTIVITY
All Species Expected, Human

Application Methods: Immunoprecipitation

Background: Tyrosine phosphorylation plays a key role in cellular signaling (1). Research studies have shown that in cancer, unregulated tyrosine kinase activity can drive malignancy and tumor formation by generating inappropriate proliferation and survival signals (2). Antibodies specific for phospho-tyrosine (3,4) have been invaluable reagents in these studies. The phospho-tyrosine monoclonal antibodies developed by Cell Signaling Technology are exceptionally sensitive tools for studying tyrosine phosphorylation and monitoring tyrosine kinase activity in high throughput drug discovery.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD105/Endoglin is an auxiliary receptor for the TGF-β receptor complex, functioning in related signaling pathways (1,2). CD105/Endoglin is a transmembrane protein that exists as a disulfide-linked homodimer. It is mainly expressed in vascular and connective tissues and in endothelial and stromal cells. Upregulated CD105/endoglin expression has been reported during wound healing and tumor vascularization, and in inflammatory tissues and developing embryos (1-4). Mutations inCD105/endoglin have been found to be a causal factor of hereditary hemorrhagic telangiectasia (HHT), a disease characterized by malformation of vascular structure (5,6). The importance of this protein for normal and tumor vascular function makes it a good marker for endothelial cell proliferation as well as a potential therapeutic target in cancer (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Additional sex combs-like protein 1 (ASXL1) is a polycomb-associated protein that interacts with polycomb repressive complex 2 (PRC2), which contains the histone methyltransferase EZH2 and functions to mono-, di-, and tri-methylate histone H3 on lysine 27. These histone marks are associated with transcriptional repression (1). In addition, ASXL1 interacts with BRCA1-associated protein 1 (BAP1), the catalytic subunit of the polycomb repressive deubiquitinase complex (PR-DUB), which functions to de-ubiquitinate histone H2A at lysine 119 and activate transcription (2). ASXL1 functions as a transcriptional regulator of adipogenesis, acting to repress peroxisome proliferator-activated receptor gamma (PPARG) adipocyte differentiation. ASXL1 also functions as a transcriptional regulator of hematopoiesis acting as an activator of retinoic acid receptor (RAR) mediated transcriptional activation (3,4). ASXL1 is mutated or deleted in 10 to 30 percent of all myeloid malignancies, with loss-of-function mutations associated with poor prognosis in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Hematopoietic-specific deletions of ASXL1 in mice result in progressive, multi-lineage cytopenias and dysplasias, leading to increased number of hematopoietic stem and progenitor cells (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: PEA-15 is a 15 kDa phosphoprotein expressed abundantly in astrocytes and fibroblasts as well as in tissues, including the lung and eye (1). The protein has been shown to coordinate cell growth, death, and glucose utilization (2-4). The amino-terminal DED domain of PEA-15 mediates its binding to FADD or Erk and further regulates the Erk and apoptosis signaling pathways. PEA-15 can be phosphorylated at two serine residues, Ser104 and Ser116, located within the carboxy terminus. Phosphorylation at these sites regulates binding to Erk and FADD (2,3).

$489
96 assays
1 Kit
CST's PathScan® Phospho-Akt2 (Ser474) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of Akt2 protein when phosphorylated at Ser474. A phospho-Akt rabbit antibody has been coated on the microwells. After incubation with cell lysates, phospho-Akt protein is captured by the coated antibody. Following extensive washing, Akt2 mouse mAb is added to detect captured Akt2 protein. HRP-linked anti-mouse IgG is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of Akt2 phosphorylated at Ser474.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: CrkII, a cellular homologue of v-Crk, belongs to a family of adaptor proteins with an SH2-SH3-SH3 domain structure that transmits signals from tyrosine kinases (1). The primary function of Crk is to recruit cytoplasmic proteins in the vicinity of tyrosine kinases through SH2-phospho-tyrosine interaction. Thus, the output from Crk depends on the SH3-binding proteins, which include the C3G and Sos guanine nucleotide exchange proteins, Abl tyrosine kinase, DOCK180 and some STE20-related kinases. The variety of Crk-binding proteins indicates the pleiotropic function of Crk (2). The two CrkII SH3 domains are separated by a 54 amino acid linker region, which is highly conserved in Xenopus, chicken and mammalian CrkII proteins (3). Tyrosine 221 in this region is phosphorylated by the Abl tyrosine kinase (4), IGF-I receptor (5) and EGF receptor (6). Once Tyr221 is phosphorylated, CrkII undergoes a change in intramolecular folding and SH2-pTyr interaction, which causes rapid dissociation of CrkII from the tyrosine kinase complex (3).

$303
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: TBC1D1 is a paralog of AS160 (1) and both proteins share about 50% identity (2). TBC1D1 was shown to be a candidate gene for severe obesity (3). It plays a role in Glut4 translocation through its GAP activity (2,4). Studies indicate that TBC1D1 is highly expressed in skeletal muscle (1). Insulin, AICAR, and contraction directly regulate TBC1D1 phosphorylation in this tissue (1). Three AMPK phosphorylation sites (Ser231, Ser660, and Ser700) and one Akt phosphorylation site (Thr590) were identified in skeletal muscle (5). Muscle contraction or AICAR treatment increases phosphorylation on Ser231, Ser660, and Ser700 but not on Thr590; insulin increases phosphorylation on Thr590 only (5).

$114
10 ml
Alexa Fluor® and many other anionic fluorescent dyes and proteins can bind nonspecifically with cationic cell and tissue constituents. By efficiently blocking these nonspecific electrostatic interactions, Image-iT® FX Signal Enhancer can dramatically improve the signal-to-noise ratio of immunolabeled cells and tissues. Image-iT® is a liquid that is applied directly to slides or coverslips containing fixed and permeabilized cell or tissue samples prior to staining with fluorescent probes.
APPLICATIONS

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunofluorescence (Paraffin)

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, IHC-Leica® Bond™, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: TNFRSF18, also known as glucocorticoid-induced tumor necrosis factor-receptor (TNFR)-related protein (GITR) and activation-inducible TNFR family receptor, encodes a type 1 membrane protein of the TNF-receptor superfamily (1). Three alternatively spliced transcript variants encoding distinct isoforms have been reported (2). GITR is an immune cell co-stimulatory receptor expressed constitutively at high levels on CD4+CD25+ T regulatory cells (Tregs), at low levels on naive and memory T cells, and is induced upon T cell activation (3-5). Studies show GITR can also be induced on NK cells, macrophages, and DCs (3, 4, 6). Although GITR does not have intrinsic enzymatic activity, TNFSF18 (also known as GITRL) expressed on antigen presenting cells binds to GITR resulting in recruitment of TNFR-associated factor family members and activation of the NF-kappa-B pathway in T cells (7). GITR ligation has been shown to play a role in CD8+ T cell activation, cytoxicity, and memory T cell survival (8-10). In the thymus, GITR is thought to play a key role in dominant immunological self-tolerance through thymic Treg differentiation and expansion (11). Of note, GITR ligation inhibits Treg suppressive function (12-13) and promotes effector T cell resistance to Treg suppression (14-15). Due to the combined effects on both Treg suppression and effector cell activation, GITR represents a unique opportunity for immunotherapeutic intervention in cancer (16).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Carbonic anhydrases (CA) are a family of ancient zinc metalloenzymes found in almost all living organisms. All CA can be divided into 3 distinct classes (α, β, and γ) that evolved independently and have no significant homology in sequence and overall folding. All functional CA catalyze the reversible hydration of CO2 into HCO3- and H+ and contain a zinc atom in the active sites essential for catalysis. There are many isoforms of CA in mammals and they all belong to the α class (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The methylation state of lysine residues in histone proteins is a major determinant of the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (1,2). Jumonji C (JmjC) domain-containing proteins represent the largest class of potential histone demethylase proteins (3). The JmjC domain of several proteins has been shown to catalyze the demethylation of mono-, di-, and tri-methyl lysine residues via an oxidative reaction that requires iron and α-ketoglutarate (3). Based on homology, both humans and mice contain at least 30 such proteins, which can be divided into seven separate families (3). The JMJD1 (Jumonji domain-containing protein 1) family, also known as JHDM2 (JmjC domain-containing histone demethylation protein 2) family, contains four members: hairless (HR), JMJD1A/JHDM2A, JMJD1B/JHDM2B, and JMJD1C/JHDM2C. Hairless is expressed in the skin and brain and acts as a co-repressor of the thyroid hormone receptor (4-6). Mutations in the hairless gene cause alopecia in both mice and humans (4,5). JMJD1A is expressed in meiotic and post-meiotic male germ cells, contributes to androgen receptor-mediated gene regulation, and is required for spermatogenesis (7-9). It has also been identified as a downstream target of OCT4 and STAT3 and is critical for the regulation of self-renewal in embryonic stem cells (10,11). JMJD1B is a more widely expressed family member and is frequently deleted in myeloid leukemia (12). JMJD1C (also known as TRIP8) is a co-factor of both the androgen and thyroid receptors and has a potential link to autism (13-15). Members of the JMJD1/JHDM2 family have been shown to demethylate mono-methyl and di-methyl histone H3 (Lys9) (3,8).

$118
10 western blots
200 µl
NF-κB Control Cell Extracts (HeLa untreated): Total cell extracts from HeLa cells serve as a negative control. Supplied SDS Sample Buffer.NF-κB Control Cell Extracts (HeLa + hTNF-alpha): Total cell extracts from HeLa cells treated with Human Tumor Necrosis Factor-α (hTNF-α) #8902 serve as a positive control. Supplied SDS Sample Buffer.
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$348
100 µl
This Cell Signaling Technology® antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated EGF Receptor (D38B1) XP® Rabbit mAb #4267.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).