Microsize antibodies for $99 | Learn More >>

Product listing: Phospho-CXCR4 (Ser324/Ser325) Antibody, UniProt ID P61073 #85578 to α-N-Catenin Antibody, UniProt ID P26232 #2131

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CXCR4 is a chemokine receptor that belongs to the G protein-coupled receptor family. It is activated by a small cytokine, CXCL12, also known as stromal cell derived factor 1 (SDF-1) (1). The main function of CXCR4 is the mediation of the homing of progenitor cells in the bone marrow and their recruitment to sites of injury (2). More recently, CXCR4 has been studied, as a potential therapeutic target, in the context of autoimmune diseases (3) as well as cancer, as the receptor is involved in the regulation of migration, proliferation, and survival of cancer cells (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: RanBP1 is a Ran binding protein that functions in nuclear trafficking for both nuclear import and export (1-3). Its protein sequence contains a Ran binding domain and a C-terminal nuclear export signal, which maintains its cytoplasmic localization (2,3). During nuclear export, RanBP1 forms a complex with RanGTP and CRM1/cargo, leading to dissociation of cargo from CRM1 (2,4). RanBP1 further stimulates RanGTP-RanGAP1 association to facilitate RanGTP hydrolysis and the generation of RanGDP to complete the final steps of nuclear export (5). During nuclear import, RanBP1 stabilizes the formation of a RanGDP-importin/NLS receptor-RanBP1 complex. This complex regulates the release of imported cargo into the nucleus (6,7). In addition to nuclear trafficking, RanBP1 also controls RanGTP distribution along mitotic microtubules, which localizes critical factors, such as cyclin B1 and HURP, to mitotic microtubles and regulates chromosome segregation (8,9). In vivo knock down or overexpression of RanBP1 has been shown to affect cellular ciliogenesis by regulating the local RanGTP concentation at the base of cilia (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Ring1 and YY1-binding protein (RYBP) is a widely expressed nuclear protein that functions as a modulator of Ring1A/Ring1B-dependent histone H2A monoubiquitylation (1-3). Ring1A and Ring1B proteins function as the catalytic core subunits of polyclomb repressor complex 1 (PRC1), which acts to repress gene expression in part through monoubiquitination of histone H2A on Lys119 (4). By binding to both the YY1 DNA-binding transcription factor and Ring1A/Ring1B, RYPB is able to recruit the PRC1 complex to target loci independent of prior tri-methylation of histone H3 Lys27 by the EZH2-dependent PRC2 complex (2,3). RYBP also binds monoubiquitinated H2A Lys119 and may act to stabilize or spread binding of PRC1 across large domains of repressed chromatin (5). In addition, RYBP directly stimulates the ubiquitination activity of Ring1A/Ring1B and is required for proper differentiation of stem cells along multiple cell lineages (2,3,6,7). RYBP has also been shown to bind MDM2 and block ubiquitination and degradation of p53, leading to cell cycle arrest and apoptosis in response to DNA damage (8). Many studies demonstrate that RYBP functions as a tumor suppressor protein. RYBP expression is decreased in multiple cancers, including non-small cell lung cancer, hepatocellular carcinoma, and glioblastoma with decreased expression correlating with metastasis and poor prognosis (8-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Serum and glucocorticoid-inducible kinase (SGK) is a serine/threonine kinase closely related to Akt (1). SGK is rapidly induced in response to a variety of stimuli, including serum, glucocorticoid, follicle stimulating hormone, osmotic shock, and mineralocorticoids. SGK activation can be accomplished via HGF PI3K-dependent pathways and by integrin-mediated PI3K-independent pathways (2,3). Induction and activation of SGK has been implicated in activating the modulation of anti-apoptotic and cell cycle regulation (4-6). SGK also plays an important role in activating certain potassium, sodium, and chloride channels, suggesting its involvement in the regulation of processes such as cell survival, neuronal excitability, and renal sodium excretion (2). SGK is negatively regulated by ubiquitination and proteasome degradation (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: TACE (TNF-α converting enzyme), also known as ADAM17, is a transmembrane metalloprotease that plays a key role in the cleavage of a number cell surface molecules in a process known as “shedding". TACE is abundantly expressed in many adult tissues, but in fetal development expression is differentially regulated (1). An important substrate of TACE is pro-TNF-α (1). Increased expression of TACE is associated with several pathological conditions including osteoarthritis and rheumatoid arthritis, where the pro-inflammatory effects of increased TNF-α contribute to disease pathogenesis (2,3). Regulation of other important molecules by TACE such as EGFR and Notch has recently been documented. TACE is responsible for the shedding of EGFR ligands such as amphiregulin and TNF-α. Some tumors have hyperactivated EGFR due to upregulated TNF-α production and upregulated TACE, making TACE a potential target for drug development (4). TACE activates Notch in a ligand-independent manner and has been shown to play a role in the development of the Drosophila nervous system (5). TACE has also been proposed to act as α-secretase for amyloid precursor protein (APP) (6), and to be involved in the renewal and proliferation of neural stem cells (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The NFAT (nuclear factor of activated T cells) family of proteins consists of NFAT1 (NFATc2 or NFATp), NFAT2 (NFATc1 or NFATc), NFAT3 (NFATc4), and NFAT4 (NFATc3 or NFATx). All members of this family are transcription factors with a Rel homology domain and regulate gene transcription in concert with AP-1 (Jun/Fos) to orchestrate an effective immune response (1,2). NFAT proteins are predominantly expressed in cells of the immune system, but are also expressed in skeletal muscle, keratinocytes, and adipocytes, regulating cell differentiation programs in these cells (3). In resting cells, NFAT proteins are heavily phosphorylated and localized in the cytoplasm. Increased intracellular calcium concentrations activate the calcium/calmodulin-dependent serine phosphatase calcineurin, which dephosphorylates NFAT proteins, resulting in their subsequent translocation to the nucleus (2). Termination of NFAT signaling occurs upon declining calcium concentrations and phosphorylation of NFAT by kinases such as GSK-3 or CK1 (3,4). Cyclosporin A and FK506 are immunosuppressive drugs that inhibit calcineurin and thus retain NFAT proteins in the cytoplasm (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: RANK (receptor activator of NF-κB) is a member of the tumor necrosis factor (TNF) receptor subfamily that is activated by its ligand, RANKL (TRANCE/OPGL/ODF), to promote survival of dendritic cells and differentiation of osteoclasts (1-4). Although RANK is widely expressed, its cell surface expression may be more restricted to dendritic cells and foreskin fibroblasts (1). RANK contains a 383-amino acid intracellular domain that associates with specific members of the TRAF family to NF-κB and JNK activiation (1,5). RANKL/RANK signaling may also lead to survival signaling through activation of the Akt pathway and an upregulation of survival proteins, including Bcl-xL (2,6). RANK signaling has been implicated as a potential therapeutic to inhibit bone loss and arthritis (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The multidrug and toxin extrusion protein 1 (MATE1, SLC47A1) is a proton-coupled, organic cation antiporter located at the apical membrane of proximal kidney epithelial cells and the canalicular membrane of hepatocytes (1). MATE1 mediates the secretion of organic cations including drugs, toxins, and endogenous metabolites, into bile and urine (2,3). Substrates of MATE1 include multiple therapeutic agents, including metformin, cisplatin, acyclovir, and cephalexin (4,5). Polymorphisms in the corresponding SLC47A1 gene may affect the rate of renal clearance of certain cationic drugs, limiting the therapeutic benefits of these agents (6). Specifically, research studies demonstrate that SLC47A1 allelic variation correlates with differences in renal clearance rates of metformin (7), which may have an effect on the therapeutic impact of this drug in individuals diagnosed with type 2 diabetes (8).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The p53 tumor suppressor protein plays a major role in cellular response to DNA damage and other genomic aberrations. Activation of p53 can lead to either cell cycle arrest and DNA repair or apoptosis (1). p53 is phosphorylated at multiple sites in vivo and by several different protein kinases in vitro (2,3). DNA damage induces phosphorylation of p53 at Ser15 and Ser20 and leads to a reduced interaction between p53 and its negative regulator, the oncoprotein MDM2 (4). MDM2 inhibits p53 accumulation by targeting it for ubiquitination and proteasomal degradation (5,6). p53 can be phosphorylated by ATM, ATR, and DNA-PK at Ser15 and Ser37. Phosphorylation impairs the ability of MDM2 to bind p53, promoting both the accumulation and activation of p53 in response to DNA damage (4,7). Chk2 and Chk1 can phosphorylate p53 at Ser20, enhancing its tetramerization, stability, and activity (8,9). p53 is phosphorylated at Ser392 in vivo (10,11) and by CAK in vitro (11). Phosphorylation of p53 at Ser392 is increased in human tumors (12) and has been reported to influence the growth suppressor function, DNA binding, and transcriptional activation of p53 (10,13,14). p53 is phosphorylated at Ser6 and Ser9 by CK1δ and CK1ε both in vitro and in vivo (13,15). Phosphorylation of p53 at Ser46 regulates the ability of p53 to induce apoptosis (16). Acetylation of p53 is mediated by p300 and CBP acetyltransferases. Inhibition of deacetylation suppressing MDM2 from recruiting HDAC1 complex by p19 (ARF) stabilizes p53. Acetylation appears to play a positive role in the accumulation of p53 protein in stress response (17). Following DNA damage, human p53 becomes acetylated at Lys382 (Lys379 in mouse) in vivo to enhance p53-DNA binding (18). Deacetylation of p53 occurs through interaction with the SIRT1 protein, a deacetylase that may be involved in cellular aging and the DNA damage response (19).

$348
100 µl
This Cell Signaling Technology (CST) antibody is conjugated to biotin under optimal conditions. The unconjugated PTEN (D4.3) XP® Rabbit mAb #9188 reacts with human, mouse, rat and monkey PTEN protein. PTEN (D4.3) XP® Rabbit mAb (Biotinylated) also recognizes PTEN in these species.
APPLICATIONS
REACTIVITY
Dog, Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: PTEN (phosphatase and tensin homologue deleted on chromosome ten), also referred to as MMAC (mutated in multiple advanced cancers) phosphatase, is a tumor suppressor implicated in a wide variety of human cancers (1). PTEN encodes a 403 amino acid polypeptide originally described as a dual-specificity protein phosphatase (2). The main substrates of PTEN are inositol phospholipids generated by the activation of the phosphoinositide 3-kinase (PI3K) (3). PTEN is a major negative regulator of the PI3K/Akt signaling pathway (1,4,5). PTEN possesses a carboxy-terminal, noncatalytic regulatory domain with three phosphorylation sites (Ser380, Thr382, and Thr383) that regulate PTEN stability and may affect its biological activity (6,7). PTEN regulates p53 protein levels and activity (8) and is involved in G protein-coupled signaling during chemotaxis (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Stearoyl-CoA desaturase 1 (SCD1) is a key lipogenic enzyme found in the endoplasmic reticulum that catalyzes the conversion of palmitoyl–CoA and stearoyl–CoA to palmitoleoyl–CoA (16:1) and oleoyl–CoA (18:1) (1-3). Palmitoleate and oleate are the major components of triglycerides, membrane phospholipids and cholesterol esters (1). SCD1-knockout mice show improved insulin sensitivity and reduced body fat (1). Disruption of SCD1 in mouse brown adipose tissue strengthens insulin signaling and results in increased translocation of Glut4 to plasma membrane and enhanced uptake of glucose (4). Furthermore, SCD1 is essential for the onset of diet-induced body weight gain (1) and insulin resistance in the liver (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The Drosophila piwi gene was identified as being required for the self-renewal of germ-line stem cells (1). Piwi homologs are well conserved among various species including Arabidopsis, C. elegans, and human (1). Miwi and Mili proteins are both mouse homologs of Piwi and contain a C-terminal Piwi domain (2). Miwi and Mili bind to Piwi-interacting RNAs (piRNAs) in male germ cells and are essential for spermatogenesis in mouse (3-5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Bridging integrator 1 (BIN1, AMPHL) is an adaptor protein and putative tumor suppressor expressed as multiple isoforms due to alternative splicing. The BIN1 protein was originally identified as a Myc box-interacting protein with structural similarity to the synaptic vesicle protein amphiphysin (1). BIN1 protein structure contains an amino-terminal amphipathic helix and a BAR domain that is involved in sensing membrane curvature. The protein also includes a Myc-binding domain and a SH3 domain, which are implicated in protein-protein interactions (1). Multiple BIN1 isoforms range in size from approximately 45 to 65 kDa, with the nuclear BIN1 isoform found mostly in skeletal muscle and the cytoplasmic IIA isoform expressed in axon initial segments and nodes of Ranvier of the brain (2,3). Corresponding BIN1 gene mutations and incorrect splicing can lead to impaired BIN1 membrane-tabulating and protein binding activities, resulting in development of autosomal recessive centronuclear myopathy and myotonic dystrophy (4,5). Genome-wide association studies link the BIN1 gene with late onset Alzheimer disease (AD) and increased BIN1 mRNA expression is seen in AD brains (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Upf1 was identified as an active component in nonsense-mediated decay (NMD), an mRNA surveillance mechanism in eukaryotic cells that degrades mRNAs containing premature termination codons (1). Upf1 was found to be an ATP-dependent RNA helicase in the cytoplasm (2) and was later shown to be a component of cytoplasmic P-bodies (3). Upf1 phosphorylation mediates the repression of translation that accompanies NMD, allowing mRNA accessibility to the NMD machinery (4). Two other active components of NMD, Upf2 and Upf3, were also identified and described as having perinuclear and nucleocytoplasmic localization, respectively (5).

$262
3 nmol
300 µl
SignalSilence® PKA C-α siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit PKA C-α expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: The second messenger cyclic AMP (cAMP) activates cAMP-dependent protein kinase (PKA or cAPK) in mammalian cells and controls many cellular mechanisms such as gene transcription, ion transport, and protein phosphorylation (1). Inactive PKA is a heterotetramer composed of a regulatory subunit (R) dimer and a catalytic subunit (C) dimer. In this inactive state, the pseudosubstrate sequences on the R subunits block the active sites on the C subunits. Three C subunit isoforms (C-α, C-β, and C-γ) and two families of regulatory subunits (RI and RII) with distinct cAMP binding properties have been identified. The two R families exist in two isoforms, α and β (RI-α, RI-β, RII-α, and RII-β). Upon binding of cAMP to the R subunits, the autoinhibitory contact is eased and active monomeric C subunits are released. PKA shares substrate specificity with Akt (PKB) and PKC, which are characterized by an arginine at position -3 relative to the phosphorylated serine or threonine residue (2). Substrates that present this consensus sequence and have been shown to be phosphorylated by PKA are Bad (Ser155), CREB (Ser133), and GSK-3 (GSK-3α Ser21 and GSK-3β Ser9) (3-5). In addition, combined knock-down of PKA C-α and -β blocks cAMP-mediated phosphorylation of Raf (Ser43 and Ser259) (6). Autophosphorylation and phosphorylation by PDK-1 are two known mechanisms responsible for phosphorylation of the C subunit at Thr197 (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Nicastrin is a transmembrane glycoprotein serving as an essential component of the γ-secretase complex (1,2). Nicastrin is physically associated with presenilin and plays an important role in the stabilization and correct localization of presenilin to the membrane-bound γ-secretase complex (3). Nicastrin also serves as a docking site for γ-secretase substrates such as APP and Notch, directly binding to them and properly presenting them to γ-secretase to ensure the correct cleavage process (2,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). It is generally activated by conditions of nutrient deprivation but is also associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and is directed by a number of autophagy-related (Atg) genes.Vacuolar trafficking and autophagy are controlled by the class III type phosphoinositide 3-kinase (PI3K) Vps34, which generates phosphoinositide-3-phosphate (PtdIns3P) (4,5). Atg18 and Atg21 are two related WD-repeat proteins that bind PtdIns3P via a conserved Phe-Arg-Arg-Gly motif (6,7). It has been shown that Atg18 binds to Atg2 and that this complex is directed to vacuolar membranes by its interaction with PtdIns3P (8). Human orthologs of Atg18 and Atg21 were identified as members of the WD-repeat protein Interacting with Phosphoinositides (WIPI) family (9-11). WIPI1 (also called WIPI49) and WIPI2 have been shown to translocate from several vacuolar compartments to LC3-positive autophagosomes during autophagy; this translocation may be used as an autophagy marker (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Mitogen-activated protein kinase kinase kinase 2 (MEKK2/MAP3K2) belongs to the MAP3K family of Ser/Thr kinases. Research studies have demonstrated that MEKK2 plays a pivotal role in transducing mitogenic signals emanating from EGFR and FGF2R to JNK and ERK5 signaling cascades (1,2). Post-translationally MEKK2 is regulated through multiple mechanisms including: dimerization (3,4), ubiquitination (5,6), phosphorylation (7) and methylation (8). Research studies implicate dysregulation of MEKK2 signaling in breast carcinoma (9), colorectal carcinoma (10), and pancreatic ductal adenocarcinoma (8).

$489
96 assays
1 Kit
CST's PathScan® Total p53 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of total p53 protein. A p53 Rabbit mAb has been coated onto the microwells. After incubation with cell lysates, Both nonphospho- and phospho-p53 proteins are captured by the coated antibody. Following extensive washing, a p53 Mouse mAb is added to detect the captured p53 protein. Anti-Mouse IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of optical density for this developed color is proportional to the quantity of total p53 protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: The p53 tumor suppressor protein plays a major role in cellular response to DNA damage and other genomic aberrations. Activation of p53 can lead to either cell cycle arrest and DNA repair or apoptosis (1). p53 is phosphorylated at multiple sites in vivo and by several different protein kinases in vitro (2,3). DNA damage induces phosphorylation of p53 at Ser15 and Ser20 and leads to a reduced interaction between p53 and its negative regulator, the oncoprotein MDM2 (4). MDM2 inhibits p53 accumulation by targeting it for ubiquitination and proteasomal degradation (5,6). p53 can be phosphorylated by ATM, ATR, and DNA-PK at Ser15 and Ser37. Phosphorylation impairs the ability of MDM2 to bind p53, promoting both the accumulation and activation of p53 in response to DNA damage (4,7). Chk2 and Chk1 can phosphorylate p53 at Ser20, enhancing its tetramerization, stability, and activity (8,9). p53 is phosphorylated at Ser392 in vivo (10,11) and by CAK in vitro (11). Phosphorylation of p53 at Ser392 is increased in human tumors (12) and has been reported to influence the growth suppressor function, DNA binding, and transcriptional activation of p53 (10,13,14). p53 is phosphorylated at Ser6 and Ser9 by CK1δ and CK1ε both in vitro and in vivo (13,15). Phosphorylation of p53 at Ser46 regulates the ability of p53 to induce apoptosis (16). Acetylation of p53 is mediated by p300 and CBP acetyltransferases. Inhibition of deacetylation suppressing MDM2 from recruiting HDAC1 complex by p19 (ARF) stabilizes p53. Acetylation appears to play a positive role in the accumulation of p53 protein in stress response (17). Following DNA damage, human p53 becomes acetylated at Lys382 (Lys379 in mouse) in vivo to enhance p53-DNA binding (18). Deacetylation of p53 occurs through interaction with the SIRT1 protein, a deacetylase that may be involved in cellular aging and the DNA damage response (19).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: α-Actinin belongs to the spectrin family of cytoskeletal proteins. It was first recognized as an actin cross-linking protein, forming an antiparallel homodimer with an actin binding head at the amino terminus of each monomer. The α-actinin protein interacts with a large number of proteins involved in signaling to the cytoskeleton, including those involved in cellular adhesion, migration, and immune cell targeting (1). The interaction of α-actinin with intercellular adhesion molecule-5 (ICAM-5) helps to promote neurite outgrowth (2). In osteoblasts, interaction of α-actinin with integrins stabilizes focal adhesions and may protect cells from apoptosis (3). The cytoskeletal α-actinin isoforms 1 and 4 (ACTN1, ACTN4) are non-muscle proteins that are present in stress fibers, sites of adhesion and intercellular contacts, filopodia, and lamellipodia. The muscle isoforms 2 and 3 (ACTN2, ACTN3) localize to the Z-discs of striated muscle and to dense bodies and plaques in smooth muscle (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Neural precursor expressed, developmentally down-regulated protein 4 (NEDD4) was originally identified as a gene that is highly expressed in the early mouse embryonic central nervous system (1). Subsequently, a family of NEDD4-like proteins have been defined that includes seven members in humans (2). NEDD4 and NEDD4-like (NEDD4L) proteins contain multiple functional domains including a calcium-dependent phospholipid and membrane binding domain (C2 domain), two to four protein binding domains (WW domains), and an E3 ubiquitin-protein ligase domain (HECT domain). NEDD4 and NEDD4L have been shown to downregulate both neuronal voltage-gated Na+ channels (NaVs) and epithelial Na+ channels (ENaCs) in response to increased intracellular Na+ concentrations (3,4). The WW domains of NEDD4 bind to PY motifs (amino acid sequence PPXY) found in multiple NaV and ENaC proteins; ubiquitination of these proteins is mediated by the HECT domain of NEDD4 and results in their internalization and removal from the plasma membrane. Research studies have shown that mutation of the PY motifs in ENaC proteins is associated with Liddle's syndrome, an autosomal dominant form of hypertension (5). In addition to targeting sodium channels, NEDD4L has also been shown to negatively regulate TGF-β signaling by targeting Smad2 for degradation (6). Mouse and human NEDD4 are rapidly cleaved by caspase proteins during apoptosis, although the significance of this cleavage is not clear (7).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Phospho-SAPK/JNK (Thr183/Tyr185) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan® Phospho-SAPK/JNK (Thr183/Tyr185) Sandwich ELISA Kit #7325. Capture and Detection antibodies (100X stocks) and HRP-conjugated secondary antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The Phospho-SAPK/JNK (Thr183/Tyr185) Capture Antibody is coated in PBS overnight in a 96 well microplate. After blocking, cell lysates are added followed by SAPK/JNK Detection Antibody and Anti-mouse IgG, HRP-conjugated Antibody. HRP substrate, TMB, is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of Phospho-SAPK/JNK (Thr183/Tyr185) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse

Background: The stress-activated protein kinase/Jun-amino-terminal kinase SAPK/JNK is potently and preferentially activated by a variety of environmental stresses including UV and gamma radiation, ceramides, inflammatory cytokines, and in some instances, growth factors and GPCR agonists (1-6). As with the other MAPKs, the core signaling unit is composed of a MAPKKK, typically MEKK1-MEKK4, or by one of the mixed lineage kinases (MLKs), which phosphorylate and activate MKK4/7. Upon activation, MKKs phosphorylate and activate the SAPK/JNK kinase (2). Stress signals are delivered to this cascade by small GTPases of the Rho family (Rac, Rho, cdc42) (3). Both Rac1 and cdc42 mediate the stimulation of MEKKs and MLKs (3). Alternatively, MKK4/7 can be activated in a GTPase-independent mechanism via stimulation of a germinal center kinase (GCK) family member (4). There are three SAPK/JNK genes each of which undergoes alternative splicing, resulting in numerous isoforms (3). SAPK/JNK, when active as a dimer, can translocate to the nucleus and regulate transcription through its effects on c-Jun, ATF-2, and other transcription factors (3,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: GABA (γ-aminobutyric acid) is the primary inhibitory neurotransmitter in the central nervous system and interacts with three different receptors: GABA(A), GABA(B) and GABA(C) receptor. The ionotropic GABA(A) and GABA(C) receptors are ligand-gated ion channels that produce fast inhibitory synaptic transmission. In contrast, the metabotropic GABA(B) receptor is coupled to G proteins that modulate slow inhibitory synaptic transmission (1). Functional GABA(B) receptors form heterodimers of GABA(B)R1 and GABA(B)R2 where GABA(B)R1 binds the ligand and GABA(B)R2 is the primary G protein contact site (2). Two isoforms of GABA(B)R1 have been cloned: GABA(B)R1a is a 130 kD protein and GABA(B)R1b is a 95 kD protein (3). G proteins subsequently inhibit adenyl cylase activity and modulate inositol phospholipid hydrolysis. GABA(B) receptors have both pre- and postsynaptic inhibitions: presynaptic GABA(B) receptors inhibit neurotransmitter release through suppression of high threshold calcium channels, while postsynaptic GABA(B) receptors inhibit through coupled activation of inwardly rectifying potassium channels. In addition to synaptic inhibition, GABA(B) receptors may also be involved in hippocampal long-term potentiation, slow wave sleep and muscle relaxation (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: ATP-dependent chromatin remodeling complexes play an essential role in the regulation of nuclear processes such as transcription and DNA replication and repair (1,2). The SWI/SNF chromatin remodeling complex consists of more than 10 subunits and contains a single molecule of either BRM or BRG1 as the ATPase catalytic subunit. The activity of the ATPase subunit disrupts histone-DNA contacts and changes the accessibility of crucial regulatory elements to the chromatin. The additional core and accessory subunits play a scaffolding role to maintain stability and provide surfaces for interaction with various transcription factors and chromatin (2-5). The interactions between SWI/SNF subunits and transcription factors, such as nuclear receptors, p53, Rb, BRCA1, and MyoD, facilitate recruitment of the complex to target genes for regulation of gene activation, cell growth, cell cycle, and differentiation processes (1,6-9).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Entry of all eukaryotic cells into mitosis is regulated by activation of cdc2 kinase. The critical regulatory step in activating cdc2 during progression into mitosis appears to be dephosphorylation of Tyr15 and Thr14 (1,2). Phosphorylation at Tyr15 and Thr14 and inhibition of cdc2 is carried out by Wee1 and Myt1 protein kinases, while Tyr15 dephosphorylation and activation of cdc2 is carried out by the cdc25 phosphatase (1,3,4). Hyperphosphorylation and inactivation of Myt1 in mitosis suggests that one or more kinases activated at the G2/M transition negatively regulates Myt1 activity. Kinases shown to phosphorylate Myt1 include cdc2, p90RSK, Akt, and Plk1 (5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Modulation of chromatin structure plays a critical role in the regulation of transcription and replication of the eukaryotic genome. The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. In addition to the growing number of post-translational histone modifications regulating chromatin structure, cells can also exchange canonical histones with variant histones that can directly or indirectly modulate chromatin structure (1). CENP-A, also known as the chromatin-associated protein CSE4 (capping-enzyme suppressor 4-p), is an essential histone H3 variant that replaces canonical histone H3 in centromeric heterochromatin (2). The greatest divergence between CENP-A and canonical histone H3 occurs in the amino-terminal tail of the protein, which binds linker DNA between nucleosomes and facilitates proper folding of centromeric heterochromatin (3). The amino-terminal tail of CENP-A is also required for recruitment of other centromeric proteins (CENP-C, hSMC1, hZW10), proper kinetochore assembly and chromosome segregation during mitosis (4). Additional sequence divergence in the histone fold domain is responsible for correct targeting of CENP-A to the centromere (5). Many of the functions of CENP-A are regulated by phosphorylation (6,7). Aurora A-dependent phosphorylation of CENP-A on Ser7 during prophase is required for proper targeting of Aurora B to the inner centromere in prometaphase, proper kinetochore/microtubule attachment and proper alignment of chromosomes during mitosis (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: NBC1/SLC4A4 is an eletrogenic sodium bicarbonate cotransporter. It mediates the coupled movement of Na+ and HCO3- ions across the basolateral membrane of cells. NBC1 regulates secretion and absorption of bicarbonate and modulates intracellular pH (1-3). There are five isoforms of NBC1 produced by alternative splicing including the most studied isoforms, 1 and 2, which have different N termini. The N terminus of isoform 1 contains multiple consensus phosphorylation sites for various kinases, such as PKA, PKC, and CK II, and may play a regulatory role in the biological function of NBC1 (4). Interaction with carbonic anhydrase II, IV, and IX regulates the transporter acitivity of NBC1 (5-7). NBC1 is expressed in various tissues with the exception of isoform 2, which is mainly expressed in kidney proximal tubules (1). Isoform 1 is expressed in the pancreas and corneal endothelium, and at low levels in other tissues including heart, skeletal muscle, liver, and prostate (4). Research studies have shown that mutations in the NBC1 gene are linked to proximal renal tubular acidosis with ocular abnormalities (also known as renal tubular acidosis II).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rho family GTPases are key regulators of diverse processes such as cytoskeletal organization, cell growth and differentiation, transcriptional regulation, and cell adhesion/motility. The activities of these proteins are controlled primarily through guanine nucleotide exchange factors (GEFs) that facilitate the exchange of GDP for GTP, promoting the active (GTP-bound) state, and GTPase activating proteins (GAPs) that promote GTP hydrolysis and the inactive (GDP-bound) state (1,2).The p190 RhoGAP proteins are widely expressed Rho family GAPs. p190-A has been characterized as a tumor suppressor, and research studies have shown that loss or rearrangement of the chromosomal region containing the gene for p190-A is linked to tumor development (3,4). p190-A binds the mitogen-inducible transcription factor TFII-I, sequestering it in the cytoplasm and inhibiting its activity. Phosphorylation of p190-A at Tyr308 reduces its affinity for TFII-I, relieving the inhibition (5). p190-A can also inhibit growth factor-induced gliomas in mice (6) and affect cleavage furrow formation and cytokinesis in cultured cells (7).Mice lacking p190-B RhoGAP show excessive Rho activation and a reduction in activation of the transcription factor CREB (8). Cells deficient in p190-B display defective adipogenesis (9). There is increasing evidence that p190 undergoes tyrosine phosphorylation, which activates its GAP domain (9-11). Levels of tyrosine phosphorylation are enhanced by Src overexpression (10,11). IGF-I treatment downregulates Rho through phosphorylation and activation of p190-B RhoGAP, thereby enhancing IGF signaling implicated in adipogenesis (9).

$260
100 µl
APPLICATIONS

Application Methods: Western Blotting

Background: CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins) are RNA-guided nuclease effectors that are utilized for precise genome editing in mammalian systems (1). Cpf1 (CRISPR from Prevotella and Francisella) are members of the Class 2 CRISPR system (2). Class 2 CRISPR systems, such as the well characterized Cas9, rely on single-component effector proteins to mediate DNA interference (3). Cpf1 endonucleases, compared to Cas9 systems, have several unique features that increase the utility of CRISPR-based genome editing techniques: 1) Cpf1-mediated cleavage relies on a single and short CRISPR RNA (crRNA) without the requirement of a trans-activating crRNA (tracrRNA), 2) Cpf1 utilizes T-Rich protospacer adjacent motif (PAM) sequences rather than a G-Rich PAM, and 3) Cpf1 generates a staggered, rather than a blunt-ended, DNA double-stranded break (2). These features broaden the utility of using CRISPR-Cas systems for specific gene regulation and therapeutic applications. Several Cpf1 bacterial orthologs have been characterized for CRISPR-mediated mammalian genome editing (2, 4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Adherens junctions are dynamic structures that form cell-cell contacts and are important in development, differentiation, tissue integrity, morphology and cell polarity. They are composed of the transmembrane proteins, cadherins, which bind cadherins on adjacent cells in a calcium-dependent manner. On the cytoplasmic side of adherens junctions, the classic model states that cadherins are linked to the cytoskeleton through β- and α-catenin. α-E-catenin is ubiquitously expressed, α-N-catenin is expressed in neuronal tissue, and α-T-catenin is primarily expressed in heart tissue. Research studies have demonstrated that loss of E-cadherin and α-E-catenin occurs during the progression of several human cancers, indicating that the breakdown of adherens junctions is important in cancer progression (reviewed in 1).Research studies also suggest that, rather than acting as a static link between cadherins and actin, α-catenin regulates actin dynamics directly, possibly by competing with the actin nucleating arp2/3 complex (2,3). α-catenin also plays a role in regulating β-catenin-dependent transcriptional activity, affecting differentiation and response to Wnt signaling. α-catenin binds to β-catenin in the nucleus, preventing it from regulating transcription, and levels of both proteins appear to be regulated via proteasome-dependent degradation (4).