Microsize antibodies for $99 | Learn More >>

Product listing: Dasatinib #9052 to PathScan® Phospho-LAT (Tyr191) Sandwich ELISA Kit, UniProt ID O43561 #7936

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The DYRK family includes several dual-specificity tyrosine-phosphorylated and regulated kinases capable of phosphorylating proteins at both Tyr and Ser/Thr residues (1). The DYRK family was identified based on homology to the yeast Yak1 (2) and the Drosophila minibrain (mnb) kinases (3). Seven mammalian isoforms have been discovered, including DYRK1A, DYRK1B, DYRK1C, DYRK2, DYRK3, DYRK4, and DYRK4B. Differences in substrate specificity, expression, and subcellular localization are seen across the DYRK family (4,5). All DYRK proteins have a Tyr-X-Tyr motif in the catalytic domain activation loop; phosphorylation of the second Tyr residue (e.g. Tyr312 of DYRK1A) is necessary for kinase activity. DYRKs typically autophosphorylate the Tyr residue within their activation loop, but phosphorylate substrates at Ser and Thr residues (1,6).

$364
400 µl
This Cell Signaling Technology (CST) antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated Sepharose® beads. Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb (Sepharose® Bead Conjugate) is useful for immunoprecipitation assays. The unconjugated Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb (#4370) reacts with human, mouse, rat, monkey, mink, pig, Saccharomyces cerevisiae, Drosophila melanogaster, hamster, bovine and zebrafish Phospho-p44/42 MAPK protein. CST expects that Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb (Sepharose® Bead Conjugate) will also recognize phospho MAPK in these species.
APPLICATIONS
REACTIVITY
Bovine, D. melanogaster, Dog, Hamster, Human, Mink, Monkey, Mouse, Pig, Rat, S. cerevisiae, Zebrafish

Application Methods: Immunoprecipitation

Background: Mitogen-activated protein kinases (MAPKs) are a widely conserved family of serine/threonine protein kinases involved in many cellular programs, such as cell proliferation, differentiation, motility, and death. The p44/42 MAPK (Erk1/2) signaling pathway can be activated in response to a diverse range of extracellular stimuli including mitogens, growth factors, and cytokines (1-3), and research investigators consider it an important target in the diagnosis and treatment of cancer (4). Upon stimulation, a sequential three-part protein kinase cascade is initiated, consisting of a MAP kinase kinase kinase (MAPKKK or MAP3K), a MAP kinase kinase (MAPKK or MAP2K), and a MAP kinase (MAPK). Multiple p44/42 MAP3Ks have been identified, including members of the Raf family, as well as Mos and Tpl2/COT. MEK1 and MEK2 are the primary MAPKKs in this pathway (5,6). MEK1 and MEK2 activate p44 and p42 through phosphorylation of activation loop residues Thr202/Tyr204 and Thr185/Tyr187, respectively. Several downstream targets of p44/42 have been identified, including p90RSK (7) and the transcription factor Elk-1 (8,9). p44/42 are negatively regulated by a family of dual-specificity (Thr/Tyr) MAPK phosphatases, known as DUSPs or MKPs (10), along with MEK inhibitors, such as U0126 and PD98059.

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Chk1 kinase acts downstream of ATM/ATR kinase and plays an important role in DNA damage checkpoint control, embryonic development, and tumor suppression (1). Activation of Chk1 involves phosphorylation at Ser317 and Ser345 by ATM/ATR, followed by autophosphorylation of Ser296. Activation occurs in response to blocked DNA replication and certain forms of genotoxic stress (2). While phosphorylation at Ser345 serves to localize Chk1 to the nucleus following checkpoint activation (3), phosphorylation at Ser317 along with site-specific phosphorylation of PTEN allows for re-entry into the cell cycle following stalled DNA replication (4). Chk1 exerts its checkpoint mechanism on the cell cycle, in part, by regulating the cdc25 family of phosphatases. Chk1 phosphorylation of cdc25A targets it for proteolysis and inhibits its activity through 14-3-3 binding (5). Activated Chk1 can inactivate cdc25C via phosphorylation at Ser216, blocking the activation of cdc2 and transition into mitosis (6). Centrosomal Chk1 has been shown to phosphorylate cdc25B and inhibit its activation of CDK1-cyclin B1, thereby abrogating mitotic spindle formation and chromatin condensation (7). Furthermore, Chk1 plays a role in spindle checkpoint function through regulation of aurora B and BubR1 (8). Research studies have implicated Chk1 as a drug target for cancer therapy as its inhibition leads to cell death in many cancer cell lines (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: MEP50 (methylosome protein 50) is a component of the methylosome, a protein arginine methyltransferase complex that modifies specific arginine residues found in arginine- and glycine-rich regions of some spliceosomal Sm proteins. MEP50 is important for methylosome activity and may regulate the transfer of Sm proteins to the SMN (survival of motor neurons) complex, an early step in the assembly of U snRNPs. Both the methylosome and the SMN complex are essential for the assembly of spliceosomal snRNPs (1).MEP50 is a WD repeat protein that may provide an interface for multiple protein interactions between methylosome proteins. (1). It binds to JBP1, an arginine protein methyltransferase component of the methylosome. MEP50 has been shown to interact with CTD phosphatase FCP1 (CTDP1), a protein that may link the processes of transcriptional elongation and splicing (2), and with SUZ12, a polycomb group protein involved in transcriptional repression (3). JBP1 and MEP50 have also been reported to interact with the methyl-CpG binding protein complex MBD2/NuRD (4).

$303
100 µl
APPLICATIONS
REACTIVITY
Rat

Application Methods: Western Blotting

Background: Insulin receptor substrate 1 (IRS-1) is one of the major substrates of the insulin receptor kinase (1). IRS-1 contains multiple tyrosine phosphorylation motifs that serve as docking sites for SH2-domain containing proteins that mediate the metabolic and growth-promoting functions of insulin (2-4). IRS-1 also contains over 30 potential serine/threonine phosphorylation sites. Ser307 of IRS-1 is phosphorylated by JNK (5) and IKK (6) while Ser789 is phosphorylated by SIK-2, a member of the AMPK family (7). The PKC and mTOR pathways mediate phosphorylation of IRS-1 at Ser612 and Ser636/639, respectively (8,9). Phosphorylation of IRS-1 at Ser1101 is mediated by PKCθ and results in an inhibition of insulin signaling in the cell, suggesting a potential mechanism for insulin resistance in some models of obesity (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Fragile X syndrome is a genetic disorder characterized by a spectrum of physical and behavioral features and is a frequent form of inherited mental retardation (1). X-linked FMRP (FMR-1) and its two autosomal homologs, FXR1 and FXR2, are polyribosome-associated RNA-binding proteins that are involved in the pathogenesis of fragile X syndrome (1-3). Each of the fragile X proteins can self-associate, as well as form heteromers with the other two related proteins (3). FMRP can act as a translation regulator and is a component of RNAi effector complexes (RISC), suggesting a role in gene silencing (4). The Drosophila homolog of FMRP (dFMRP) associates with Argonaute 2 (Ago2) and Dicer and can coimmunoprecipitate with miRNA and siRNA (5). These results suggest that fragile X syndrome is related to abnormal translation caused by defects in RNAi-related pathways. In addition, FMRP, FXR1, and FXR2 are components of stress granules (SG) and have been implicated in the translational regulation of mRNAs (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The Na,K-ATPase is an integral membrane heterodimer belonging to the P-type ATPase family. This ion channel uses the energy derived from ATP hydrolysis to maintain membrane potential by driving sodium export and potassium import across the plasma membrane against their electrochemical gradients. It is composed of a catalytic α subunit and a β subunit (reviewed in 1). Several phosphorylation sites have been identified for the α1 subunit. Tyr10 is phosphorylated by an as yet undetermined kinase (2), Ser16 and Ser23 are phosphorylated by PKC, and Ser943 is phosphorylated by PKA (3-5). All of these sites have been implicated in the regulation of enzyme activity in response to hormones and neurotransmitters, altering trafficking and kinetic properties of Na,K-ATPase. Altered phosphorylation in response to angiotensin II stimulates activity in the rat proximal tubule (6). Na,K-ATPase is also involved in other signal transduction pathways. Insulin regulates its localization in differentiated primary human skeletal muscle cells, and this regulation is dependent on ERK1/2 phosphorylation of the α subunit (7). Na,K-ATPase and Src form a signaling receptor complex that affects regulation of Src kinase activity and, subsequently, its downstream effectors (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Structural maintenance of chromosomes 2 (SMC2) and 4 (SMC4) proteins are subunits of the condensin complex, which enables chromosome condensation and maintains the compaction of chromosomes as they separate to opposite poles during anaphase (1-3). In addition to regulating chromosome condensation, condensin is a general regulator of chromosome architecture and may function to regulate gene expression and DNA repair. SMC proteins contain a hallmark bipartite ATPase domain of the ABC ATPase superfamily, which consists of an N-terminal Walker A motif nucleotide-binding domain and C-terminal Walker B motif catalytic domain that interact to form a functional ATPase (1-3). The two ATPase domains are connected by two coiled coil domains separated by a central hinge region that facilitates protein-protein interactions between partnering SMC proteins. In the case of the condensin complex, SMC2 and SMC4 interact to form a functional ATPase required for chromatin condensation; however, the mechanism by which this ATPase activity regulates chromsome architecture is still being determined. In addition to SMC proteins, condensin contains three auxiliary subunits, which function to regulate condensin ATPase activity. Higher eukaryotes contain two distinct condensin complexes (condensin I and II), both of which contain SMC2 and SMC4 (1-3). Condensin I also contains the auxiliary subunits CAP-D2, CAP-G and CAP-H, while condensin II contains the related auxiliary proteins CAP-D3, CAP-G2 and CAP-H2. The two condensin complexes show different localization patterns during the cell cycle and on chromosomes and both are required for successful mitosis, suggesting distinct functions for each complex (1-3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Neutrophil elastase is hematopoietic serine protease that belongs to the chymotrypsin superfamily and plays a critical role in the innate immune function of mature neutrophils and monocytes (1,2). Neutrophil elastase is actively synthesized as an inactive zymogen in myelocytic precursor cells of the bone marrow, which then undergoes activation by limited proteolysis and sorting to primary (azurophil) storage granules of mature neutrophil granulocytes for regulated release (3,4). Research studies have shown that neutrophils play a significant role in mediating the inflammatory response through the release of neutrophil elastase, which activates pro-inflammatory cytokines and degrades components of the extracellular matrix and Gram-negative bacteria (5). Mutations in the gene encoding neutrophil elastase, ELA2, have been implicated in hematological diseases such as cyclic and severe congenital neutropenia, which is characterized by defects in promyelocyte maturation (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen)

Background: Vasoactive intestinal polypeptide (VIP) is a neuropeptide synthesized as a precursor that is processed to an active mature peptide of 28 residues (1). VIP is produced by neurons, endocrine, and immune cells and is expressed in many tissues, in agreement with its various biological functions (2). VIP acts through activation of two receptors belonging to the G protein-coupled receptor family, VPAC1 and VPAC2 (2) and elicits several effects such as vasodilation, regulation of smooth muscle cell contractility, and blood flow in the gastrointestinal track (3,4). In addition, VIP is involved in the regulation of T cell differentiation (6), and in immunosuppression (7,8).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Mitofusin-2 (D2D10) Rabbit mAb #9482.
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Mitofusins are mitochondrial transmembrane GTPases that function to regulate mitochondrial fusion, a process that occurs in concert with mitochondrial division and is necessary for the maintenance of structural and genetic mitochondrial integrity (1,2). Two mitofusins have been described in mammals, mitofusin-1 and -2, which share 60% amino acid identity and appear to function coordinately to regulate mitochondrial fusion (3). Mitochondrial fusion is widely recognized as important for normal cell growth and development (4), and may have evolved as a mechanism to offset the deleterious effects of mtDNA mutations (3). Null mutations in either mitofusin are embryonic lethal in mice, whereas conditional knockout studies have shown that combined deletion of mitofusin-1 and mitofusin-2 in skeletal muscle results in severe mitochondrial dysfunction (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: LMO4 is a LIM zinc-binding domain-containing protein. LMO4 cDNA was first isolated from a breast tumor cDNA library (1). This transcriptional modulator is overexpressed in several epithelial cancers such as prostate, pancreas, and breast (2-4). LMO4 exhibits pro-oncogenic activities by inducing centrosome amplification and mitotic spindle abnormalities (5). LMO4 is also expressed in the brain, in regions involved in learning and the regulation of motivated behavior. In the basolateral amygdala, LMO4 functions to negatively regulate fear learning (6). Furthermore, in the nucleus accumbens, LMO4 was found to regulate the behavioral effects of cocaine (7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Mcl-1 is an anti-apoptotic member of the Bcl-2 family originally isolated from the ML-1 human myeloid leukemia cell line during phorbol ester-induced differentiation along the monocyte/macrophage pathway (1). Similar to other Bcl-2 family members, Mcl-1 localizes to the mitochondria (2), interacts with and antagonizes pro-apoptotic Bcl-2 family members (3), and inhibits apoptosis induced by a number of cytotoxic stimuli (4). Mcl-1 differs from its other family members in its regulation at both the transcriptional and post-translational level. First, Mcl-1 has an extended amino-terminal PEST region, which is responsible for its relatively short half-life (1,2). Second, unlike other family members, Mcl-1 is rapidly transcribed via a PI3K/Akt dependent pathway, resulting in its increased expression during myeloid differentiation and cytokine stimulation (1,5-7). Mcl-1 is phosphorylated in response to treatment with phorbol ester, microtubule-damaging agents, oxidative stress, and cytokine withdrawal (8-11). Phosphorylation at Thr163, the conserved MAP kinase/ERK site located within the PEST region, slows Mcl-1 protein turnover (10) but may prime the GSK-3 mediated phosphorylation at Ser159 that leads to Mcl-1 destabilization (11). Mcl-1 deficiency in mice results in peri-implantation lethality (12). In addition, conditional disruption of the corresponding mcl-1 gene shows that Mcl-1 plays an important role in early lymphoid development and in the maintenance of mature lymphocytes (13).

$115
100 µl
This Cell Signaling Technology (CST) antibody is conjugated to Alexa Fluor® 555 fluorescent dye under optimal conditions and tested in-house for direct immunofluorescent analysis in human cells.
APPLICATIONS

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Isotype control antibodies are used to estimate the nonspecific binding of target primary antibodies due to Fc receptor binding or other protein-protein interactions. An isotype control antibody should have the same immunoglobulin type and be used at the same concentration as the test antibody.

$262
3 nmol
300 µl
SignalSilence® Ezh2 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit Ezh2 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: The polycomb group (PcG) proteins are involved in maintaining the silenced state of several developmentally regulated genes and contribute to the maintenance of cell identity, cell cycle regulation, and oncogenesis (1,2). Enhancer of zeste homolog 2 (Ezh2), a member of this large protein family, contains four conserved regions including domain I, domain II, and a cysteine-rich amino acid stretch that precedes the carboxy-terminal SET domain (3). The SET domain has been linked with histone methyltransferase (HMTase) activity. Moreover, mammalian Ezh2 is a member of a histone deacetylase complex that functions in gene silencing, acting at the level of chromatin structure (4). Ezh2 complexes methylate histone H3 at Lys9 and 27 in vitro, which is thought to be involved in targeting transcriptional regulators to specific loci (5). Ezh2 is deregulated in various tumor types, and its role, both as a primary effector and as a mediator of tumorigenesis, has become a subject of increased interest (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The breast cancer susceptibility gene, BRCA1, codes for an E3 ubiquitin ligase that functions in the maintenance of genome stability through regulation of the DNA damage response and DNA repair. BRCA1 protein forms at least three distinct complexes (BRCA1 A, B, and C) with other DNA repair proteins, and these interactions are vital for regulation of BRCA1 function. The BRCA1 A complex includes Rap80, BRCC36, Abraxas, MERIT40/NBA1, and BRE/BRCC45 and functions in G2/M phase checkpoint control (reviewed in 1,2). MERIT40 and BRE maintain the stability of both the BRCA1 A complex and the cytoplasmic BRISC complex, which contains BRCC36 and ABRO1 but not BRCA1 (3).Researchers have shown that the expression level of BRE is related to patient survival in breast cancer (4), and it may predict a favorable outcome in acute myeloid leukemia (AML) (5,6). Studies have also shown that BRE is overexpressed in human hepatocellular carcinoma (7) and that overexpression of BRE can cause resistance to apoptotic signaling and promote tumor growth (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Signal transducing adaptor molecule 2 (STAM2) is a ubiquitously expressed STAM family adaptor protein and an integral component of the ESCRT-0 complex. Similar to STAM1, STAM2 possesses a single SH3 domain and an immunoreceptor tyrosine-based activation motif (ITAM). Following activation of multiple growth factor and cytokine cell surface receptors, the STAM2 protein undergoes tyrosine phosphorylation and potentiates mitogenic signals driven by these receptors (1,2). Research studies demonstrate that STAM2 is localized to complexes containing Eps15, Hrs, and STAM1 proteins on early endosome membranes. A tandem, amino-terminal VHS (Vps27/Hrs/STAM) domain and UIM (ubiquitin-interacting) motif within STAM2 facilitate STAM2 interaction with ubiquitinated cargo proteins, suggesting that this adaptor participates in the endosomal sorting of ubiquitinated proteins targeted for lysosomal degradation (3-6). Gene targeting studies have revealed an indispensible role for STAM2 in T-cell development (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Naked1 (Nkd1) and Naked2 (Nkd2) are homologs of Drosophila Naked cuticle, a negative regulator of Wnt/Wingless signaling pathway which functions through a feedback mechanism (1,2). Both Drosophila and vertebrate Naked proteins contain a putative calcium-binding EF-hand motif, however, Drosophila Naked binds to zinc instead of calcium (3). Naked inhibits the canonical Wnt/β-catenin pathway by binding to Dishevelled proteins and directs Dishevelled activity towards the planar cell polarity pathway (2,4). Naked1 is a direct target of Wnt signaling and is overexpressed in some colon tumors due to constitutive activation of Wnt/β-catenin pathway (5). Naked2 is myristoylated and is required for sorting of TGF-α to the basolateral plasma membrane of polarized epithelial cells (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein ubiquitination requires the concerted action of the E1, E2 and E3 ubiquitin-conjugating enzymes. Ubiquitin is first activated through an ATP-dependent formation of a thiol ester with an E1 enzyme. The activated ubiquitin is then transferred to a thiol-group of an E2 ubiquitin-conjugation enzyme. The final step is the transfer of ubiquitin from E2 to an ε-amino group of a lysine residue on the target protein, a transfer mediated by ubiquitin-conjugating enzyme E3 (1). UbcH5C is a universally expressed E2 ubiquitin conjugating enzyme and member of the UbcH5 family that also includes UbcH5A and UbcH5B (2). Evidence suggests that UbcH5C plays an important role in regulating a number of signaling pathways by catalyzing the ubiquitination of key target proteins, including p53, PCNA, the IκB kinase protein NEMO, and the apoptosis inhibitor BRUCE (3-6). Gene expression profiles revealed increased expression of UbcH5C in meibomian cell carcinoma and oncocytic thyroid adenomas (7,8), while an RNAi screen reveals diffrential Ubc5HC in acute promyelocytic cells (9). These results suggest a potential role of UbcH5C in cell cycle control and tumorigenesis.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Microtubules (MTs) are polarized filaments composed of α/β tubulin heterodimers. The slower growing (minus) ends of MTs are located at centrosomes, and the faster growing (plus) ends extend into the cell periphery. Regulation of MT dynamics is important for multiple cellular functions, including cell division, migration, adhesion, membrane trafficking, and polarity (reviewed in 1).Cytoplasmic linker protein 1/170 (CLIP1/CLIP170) localizes to the plus ends of MTs (2), and binds to the Rac1/cdc42 effector protein IQGAP1. This complex is involved in establishing cell polarity (3).CLIP1/CLIP170 also facilitates MT-dependent organelle transport (4), and phosphorylation of CLIP1/CLIP170 by PLK1 and CK2 is required for efficient microtubule–kinetochore attachments in mitosis (5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The nuclear mitotic apparatus protein (NuMA) is a coiled coil protein involved in the formation and maintenance of the mitotic spindle. NuMA plays a role in chromatin organization during interphase, which influences mammary epithelial differentiation (1,2). During apoptosis, carboxy-terminal cleavage of NuMA may amplify signaling in the cell death pathway (2). NuMA is phosphorylated at numerous sites, with phosphorylation at Ser395 occurring in an ATM/ATR-dependent manner in response to DNA damage (3,4).Phosphorylation at Thr2055 by CDK1 is required for spindle pole association of NuMA at the onset of mitosis. Dephosphorylation by PPP2CA leads to enhancement of NuMA at the cell cortex in anaphase and proper cell-cycle progression (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Western Blotting

Background: MAPKAPK-5 belongs to the mitogen-activated protein kinase (MAPK) activated protein kinases (MK) subfamily that includes MAPKAPK-2/MK2 and MK3/3pK. The MK subfamily is part of a family of protein kinase subfamilies downstream of MAPK pathways and includes ribosomal S6 kinase (RSKs), mitogen and stress activated kinases (MSKs) and MAPK-interacting kinases (MNKs). All MKs are activated by MAPK pathways and mediate important processes (e.g. gene expression, cell cycle progression) and have been implicated in inflammation and cancer (1,2). MAPKAPK-5 shows binding to and activation by p38 MAPK and extracellular-regulated kinases (Erk) (3,4). MAPKAPK-5 was shown to be activated by Erk3 and act as a chaperone to Erk3 (5,6). While overexpressed MAPKAPK-5 shares similar substrates with MAPKAPK-2, such as HSP27 and glycogen synthase, recent work with MAPKAPK-5 knock-out mice indicates distinct substrates and functional properties (7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The nuclear mitotic apparatus protein (NuMA) is a coiled coil protein involved in the formation and maintenance of the mitotic spindle. NuMA plays a role in chromatin organization during interphase, which influences mammary epithelial differentiation (1,2). During apoptosis, carboxy-terminal cleavage of NuMA may amplify signaling in the cell death pathway (2). NuMA is phosphorylated at numerous sites, with phosphorylation at Ser395 occurring in an ATM/ATR-dependent manner in response to DNA damage (3,4).Phosphorylation at Thr2055 by CDK1 is required for spindle pole association of NuMA at the onset of mitosis. Dephosphorylation by PPP2CA leads to enhancement of NuMA at the cell cortex in anaphase and proper cell-cycle progression (5,6).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Btk (D3H5) Rabbit mAb #8547.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Bruton's tyrosine kinase (Btk) is a member of the Btk/Tec family of cytoplasmic tyrosine kinases. Like other Btk family members, it contains a pleckstrin homology (PH) domain and Src homology SH3 and SH2 domains. Btk plays an important role in B cell development (1,2). Activation of B cells by various ligands is accompanied by Btk membrane translocation mediated by its PH domain binding to phosphatidylinositol-3,4,5-trisphosphate (3-5). The membrane-localized Btk is active and associated with transient phosphorylation of two tyrosine residues, Tyr551 and Tyr223. Tyr551 in the activation loop is transphosphorylated by the Src family tyrosine kinases, leading to autophosphorylation at Tyr223 within the SH3 domain, which is necessary for full activation (6,7). The activation of Btk is negatively regulated by PKCβ through phosphorylation of Btk at Ser180, which results in reduced membrane recruitment, transphosphorylation, and subsequent activation (8). The PKC inhibitory signal is likely to be a key determinant of the B cell receptor signaling threshold to maintain optimal Btk activity (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Mitotic control is important for normal growth, development, and maintenance of all eukaryotic cells. Research studies have demonstrated that inappropriate control of mitosis can lead to genomic instability and cancer (reviewed in 1,2). A regulator of mitosis, Greatwall kinase (Gwl), was first identified in Drosophila melanogaster (3). Subsequent studies showed that, based on sequence homology and function, microtubule-associated serine/threonine kinase-like (MASTL) is the human ortholog of Gwl (4). Regulation of MASTL/Gwl activation has been shown to be critical for the correct timing of mitosis. Research studies have shown that Gwl is activated by hyperphosphorylation (5). The phosphorylation of human Gwl at Thr194 and Thr207 by active cyclin B1-cdc2 leads to possible autophosphorylation at Ser875 (Ser883 in Xenopus), which stabilizes the kinase. Activated Gwl phosphorylates α-Endosulfine (ENSA) and cAMP-regulated phosphoprotein 19 (ARPP19) at Ser67 and Ser62, respectively. Phosphorylated ENSA and ARPP19 inhibit the activity of the B55 subunit-associated form of protein phosphatase 2A (PP2A-B55), allowing for complete phosphorylation of mitotic substrates by cyclin B1-cdc2 and mitotic entry. When Gwl is inactivated, PP2A-B55 reactivates, which leads to dephosphorylation of cyclin B1-cdc2 and mitotic exit (5,6, reviewed in 7).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 555 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated PDGF Receptor α (D13C6) XP® Rabbit mAb #5241.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Platelet derived growth factor (PDGF) family proteins exist as several disulphide-bonded, dimeric isoforms (PDGF AA, PDGF AB, PDGF BB, PDGF CC, and PDGF DD) that bind in a specific pattern to two closely related receptor tyrosine kinases, PDGF receptor α (PDGFRα) and PDGF receptor β (PDGFRβ). PDGFRα and PDGFRβ share 75% to 85% sequence homology between their two intracellular kinase domains, while the kinase insert and carboxy-terminal tail regions display a lower level (27% to 28%) of homology (1). PDGFRα homodimers bind all PDGF isoforms except those containing PDGF D. PDGFRβ homodimers bind PDGF BB and DD isoforms, as well as the PDGF AB heterodimer. The heteromeric PDGF receptor α/β binds PDGF B, C, and D homodimers, as well as the PDGF AB heterodimer (2). PDGFRα and PDGFRβ can each form heterodimers with EGFR, which is also activated by PDGF (3). Various cells differ in the total number of receptors present and in the receptor subunit composition, which may account for responsive differences among cell types to PDGF binding (4). Ligand binding induces receptor dimerization and autophosphorylation, followed by binding and activation of cytoplasmic SH2 domain-containing signal transduction molecules, such as GRB2, Src, GAP, PI3 kinase, PLCγ, and NCK. A number of different signaling pathways are initiated by activated PDGF receptors and lead to control of cell growth, actin reorganization, migration, and differentiation (5). Tyr751 in the kinase-insert region of PDGFRβ is the docking site for PI3 kinase (6). Phosphorylated pentapeptides derived from Tyr751 of PDGFRβ (pTyr751-Val-Pro-Met-Leu) inhibit the association of the carboxy-terminal SH2 domain of the p85 subunit of PI3 kinase with PDGFRβ (7). Tyr740 is also required for PDGFRβ-mediated PI3 kinase activation (8).

PhosphoPlus® Duets from Cell Signaling Technology (CST) provide a means to assess protein activation status. Each Duet contains an activation-state and total protein antibody to your target of interest. These antibodies have been selected from CST's product offering based upon superior performance in specified applications.

Background: c-Jun is a member of the Jun family containing c-Jun, JunB, and JunD, and is a component of the transcription factor activator protein-1 (AP-1). AP-1 is composed of dimers of Fos, Jun, and ATF family members and binds to and activates transcription at TRE/AP-1 elements (reviewed in 1). Extracellular signals including growth factors, chemokines, and stress activate AP-1-dependent transcription. The transcriptional activity of c-Jun is regulated by phosphorylation at Ser63 and Ser73 through SAPK/JNK (reviewed in 2). Knock-out studies in mice have shown that c-Jun is essential for embryogenesis (3), and subsequent studies have demonstrated roles for c-Jun in various tissues and developmental processes including axon regeneration (4), liver regeneration (5), and T cell development (6). AP-1 regulated genes exert diverse biological functions including cell proliferation, differentiation, and apoptosis, as well as transformation, invasion and metastasis, depending on cell type and context (7-9). Other target genes regulate survival, as well as hypoxia and angiogenesis (8,10). Research studies have implicated c-Jun as a promising therapeutic target for cancer, vascular remodeling, acute inflammation, and rheumatoid arthritis (11,12).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Toll-like Receptor 9 (D9M9H) XP® Rabbit mAb #13674.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Members of the Toll-like receptor (TLR) family, named for the closely related Toll receptor in Drosophila, play a pivotal role in innate immune responses (1-4). TLRs recognize conserved motifs found in various pathogens and mediate defense responses (5-7). Triggering of the TLR pathway leads to the activation of NF-κB and subsequent regulation of immune and inflammatory genes (4). The TLRs and members of the IL-1 receptor family share a conserved stretch of approximately 200 amino acids known as the Toll/Interleukin-1 receptor (TIR) domain (1). Upon activation, TLRs associate with a number of cytoplasmic adaptor proteins containing TIR domains, including myeloid differentiation factor 88 (MyD88), MyD88-adaptor-like/TIR-associated protein (MAL/TIRAP), Toll-receptor-associated activator of interferon (TRIF), and Toll-receptor-associated molecule (TRAM) (8-10). This association leads to the recruitment and activation of IRAK1 and IRAK4, which form a complex with TRAF6 to activate TAK1 and IKK (8,11-14). Activation of IKK leads to the degradation of IκB, which normally maintains NF-κB in an inactive state by sequestering it in the cytoplasm.

$489
96 assays
1 Kit
The PathScan® Phospho-LAT (Tyr191) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of phospho-LAT (Tyr191). A LAT mouse antibody has been coated onto the microwells. After incubation with cell lysates, LAT protein (phosphorylated and non-phosphorylated) is captured by the coated antibody. Following extensive washing, a phospho-LAT (Tyr191) rabbit detection antibody is added to detect the captured phospho-LAT (Tyr191). HRP-linked anti-rabbit antibody is then used to recognize the bound detection antibody. The HRP substrate TMB is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of phospho-LAT (Tyr191).Antibodies in kit are custom formulations specific to kit
REACTIVITY
Human

Background: LAT, a transmembrane adaptor protein expressed in T, NK and mast cells, is an important mediator for T cell receptor (TCR) signaling (1). Upon TCR engagement, activated Zap-70 phosphorylates LAT at multiple conserved tyrosine residues within SH2 binding motifs, exposing these motifs as the docking sites for downstream signaling targets (2,3). The phosphorylation of LAT at Tyr171 and Tyr191 enables the binding of Grb2, Gads/SLP-76, PLCγ1 and PI3 kinase through their SH2 domain and translocates them to the membrane. This process eventually leads to activation of the corresponding signaling pathways (1-4).