Microsize antibodies for $99 | Learn More >>

Product listing: NFI-C Antibody, UniProt ID P08651 #11911 to CTDSPL2 (D79G11) Rabbit mAb, UniProt ID Q05D32 #6932

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: NFI-C belongs to the nuclear factor I (NFI) family of site-specific transcription factors that regulate viral DNA replication and expression of various genes (1,2). The NFI family is composed of four members in vertebrates: NFI-A, NFI-B, NFI-C, and NFI-X, all of which are critical in the development of multiple organ systems in mice and humans (3). NFI-C is expressed in various tissues and regulates TGF-β dependent tooth development and hair follicle cycling (3-5). Research studies have shown that NFI-C directly represses FoxF1 transcription and suppresses the motility and invasiveness of breast cancer cells (6).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in cells transfected with GST-tagged protein.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Despite their relatively small size (8-12 kDa) and uncomplicated architecture, S100 proteins regulate a variety of cellular processes such as cell growth and motility, cell cycle progression, transcription, and differentiation. To date, 25 members have been identified, including S100A1-S100A18, trichohyalin, filaggrin, repetin, S100P, and S100Z, making it the largest group in the EF-hand, calcium-binding protein family. Interestingly, 14 S100 genes are clustered on human chromosome 1q21, a region of genomic instability. Research studies have demonstrated that significant correlation exists between aberrant S100 protein expression and cancer progression. S100 proteins primarily mediate immune responses in various tissue types but are also involved in neuronal development (1-4).Each S100 monomer bears two EF-hand motifs and can bind up to two molecules of calcium (or other divalent cation in some instances). Structural evidence shows that S100 proteins form antiparallel homo- or heterodimers that coordinate binding partner proximity in a calcium-dependent (and sometimes calcium-independent) manner. Although structurally and functionally similar, individual members show restricted tissue distribution, are localized in specific cellular compartments, and display unique protein binding partners, which suggests that each plays a specific role in various signaling pathways. In addition to an intracellular role, some S100 proteins have been shown to act as receptors for extracellular ligands or are secreted and exhibit cytokine-like activities (1-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The Set1 histone methyltransferase protein was first identified in yeast as part of the Set1/COMPASS histone methyltransferase complex, which methylates histone H3 at Lys4 and functions as a transcriptional co-activator (1). While yeast contain only one known Set1 protein, mammals contain six Set1-related proteins: SET1A, SET1B, MLL1, MLL2, MLL3, and MLL4, all of which assemble into COMPASS-like complexes and methylate histone H3 at Lys4 (2,3). These Set1-related proteins are each found in distinct protein complexes, all of which share the common subunits WDR5, RBBP5, ASH2L, CXXC1 and DPY30, which are required for proper complex assembly and modulation of histone methyltransferase activity (2-6). MLL1 and MLL2 complexes contain the additional protein subunit, menin (6).MLL3, also known as histone-lysine N-methyltransferase 2C (KMT2C), is a large 540 kDa protein that functions as part of the MLL3/COMPASS-like complex to activate gene expression by mediating mono-methylation of histone H3 lysine 4 at gene enhancers (7). Enhancer-specific H3 lysine 4 mono-methylation (H3K4me1) correlates with increased levels of chromatin interactions between gene enhancers and promoters, while loss of this modification results in a reduction of enhancer-promoter interactions (8). Furthermore, H3K4me1 facilitates recruitment of the Cohesin complex, which may function to promote the interactions between gene enhancers and promoters (8). MLL3 is found to be mutated or have altered expression in a number of different cancers (9).

$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: GATA proteins comprise a group of transcription factors that are related by the presence of conserved zinc finger DNA binding domains, which bind directly to the nucleotide sequence core element GATA (1-3). There are six vertebrate GATA proteins, designated GATA-1 to GATA-6 (3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: The Na,K-ATPase is an integral membrane heterodimer belonging to the P-type ATPase family. This ion channel uses the energy derived from ATP hydrolysis to maintain membrane potential by driving sodium export and potassium import across the plasma membrane against their electrochemical gradients. It is composed of a catalytic α subunit and a β subunit (reviewed in 1). Several phosphorylation sites have been identified for the α1 subunit. Tyr10 is phosphorylated by an as yet undetermined kinase (2), Ser16 and Ser23 are phosphorylated by PKC, and Ser943 is phosphorylated by PKA (3-5). All of these sites have been implicated in the regulation of enzyme activity in response to hormones and neurotransmitters, altering trafficking and kinetic properties of Na,K-ATPase. Altered phosphorylation in response to angiotensin II stimulates activity in the rat proximal tubule (6). Na,K-ATPase is also involved in other signal transduction pathways. Insulin regulates its localization in differentiated primary human skeletal muscle cells, and this regulation is dependent on ERK1/2 phosphorylation of the α subunit (7). Na,K-ATPase and Src form a signaling receptor complex that affects regulation of Src kinase activity and, subsequently, its downstream effectors (8,9).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Cleaved PARP (Asp214) (D64E10) XP® Rabbit mAb #5625.
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry

Background: PARP, a 116 kDa nuclear poly (ADP-ribose) polymerase, appears to be involved in DNA repair in response to environmental stress (1). This protein can be cleaved by many ICE-like caspases in vitro (2,3) and is one of the main cleavage targets of caspase-3 in vivo (4,5). In human PARP, the cleavage occurs between Asp214 and Gly215, which separates the PARP amino-terminal DNA binding domain (24 kDa) from the carboxy-terminal catalytic domain (89 kDa) (2,4). PARP helps cells to maintain their viability; cleavage of PARP facilitates cellular disassembly and serves as a marker of cells undergoing apoptosis (6).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for direct immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated EpCAM (VU1D9) Mouse mAb #2929.
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Epithelial cell adhesion and activating molecule (EpCAM/CD326) is a transmembrane glycoprotein that mediates Ca2+-independent, homophilic adhesions on the basolateral surface of most epithelial cells. EpCAM is not expressed in adult squamous epithelium, but it is highly expressed in adeno and squamous cell carcinomas (1). Research studies identified EpCAM as one of the first tumor-associated antigens, and it has long been a marker of epithelial and tumor tissue. Investigators have shown that EpCAM is highly expressed in cancer cells (reviewed in 2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Cathepsin B (CSTB), part of the papain family of proteases, is a widely expressed lysosomal cysteine endopeptidase (1,2). Cathepsin B is produced from a larger precursor form, pro-cathepsin B, which runs at approximately 44 kDa on SDS-PAGE, and is proteolytically processed and glycosylated to form a mature two-chain protein containing a heavy chain (running at 27 and 24 kDa) and a light chain (5 kDa). High levels of cathepsin B are found in macrophages and osteoclasts, as well as various types of cancer cells, including lung, colon, prostate, breast, and stomach. In addition, expression of cathepsin B has been associated with multiple sclerosis (3), rheumatoid arthritis (4), and pancreatitis (5). While generally localized to lysosomes, in cancer alterations can lead to its secretion (6). Its role in tumor progression is thought to involve promotion of basement membrane degradation, invasion and metastasis (7,8). Expression can correlate with poor prognosis for a variety of forms of cancer (9-13).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Ikaros (D6N9Y) Rabbit mAb #14859.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: The Ikaros family of zinc-finger DNA-binding proteins belongs to the Kruppel transcription factor superfamily. Ikaros proteins are characterized by the presence of an amino-terminal zinc finger DNA-binding domain and a carboxy-terminal dimerization domain. Members of the Ikaros family include Ikaros, Aiolos, Helios, EOS, and Pegasus (1). All family members can form homodimers and heterodimers with other members of the Ikaros family. Most also contain multiple isoforms that are generated as a result of differential splicing, with some isoforms behaving in a dominant negative manner upon dimerization (2).Ikaros (IKZF1, LYF1) is the prototypical Ikaros family zinc-finger transcription factor and is expressed abundantly in lymphoid cells. Genetic studies in mice demonstrate that Ikaros is a tumor suppressor that is important for the normal development of B, T, natural killer, and dendritic cells (3,4). Additional studies show that imbalanced expression of different Ikaros isoforms, as well as mutations in the corresponding IKAROS gene, can be associated with a number of hematologic malignancies in humans (2,5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: S5a (PSMD4) is a subunit of the 19S regulatory proteasome complex functioning in ubiquitinated-protein targeting and degradation (1). S5a contains two polyubiquitin binding motifs (UIM) that bind multiubiquitin chains by hydrophobic interaction (2,3). In addition to ubiquitin, the UIM of S5a shows high affinity to a ubiquitin-like domain present in many proteins. S5a binds to these types of proteins directly and mediates their targeting to the proteasome for degradation (4,5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Tie2/Tek is a receptor tyrosine kinase (RTK) expressed almost exclusively on endothelial cells. It is critical for vasculogenesis and could be important for maintaining endothelial cell survival and integrity in adult blood vessels as well as tumor angiogenesis (1-3). A family of ligands known as the angiopoietins binds to Tie2. Interestingly, these ligands appear to have opposing actions; Angiopoietin-1 (Ang1) and Angiopoietin-4 (Ang4) stimulate tyrosine phosphorylation of Tie2; Angiopoietin-2 (Ang2) and Angiopoietin-3 (Ang3) can inhibit this phosphorylation (4,5). Downstream signaling components, including Grb2, Grb7, Grb14, SHP-2, the p85 subunit of phosphatidylinositol 3-kinase, and p56/Dok-2 interact with Tie2 in a phosphotyrosine-dependent manner through their SH2 or PTB domains (6,7). Tyr992 is located on the putative activation loop of Tie2 and is a major autophosphorylation site (8).

$305
400 µl
This Cell Signaling Technology antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated Sepharose® beads. Stat3 (79D7) Rabbit mAb (Sepharose® Bead Conjugate) is useful for the immunoprecipitation assay of Stat3 proteins.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation

Background: The Stat3 transcription factor is an important signaling molecule for many cytokines and growth factor receptors (1) and is required for murine fetal development (2). Research studies have shown that Stat3 is constitutively activated in a number of human tumors (3,4) and possesses oncogenic potential (5) and anti-apoptotic activities (3). Stat3 is activated by phosphorylation at Tyr705, which induces dimerization, nuclear translocation, and DNA binding (6,7). Transcriptional activation seems to be regulated by phosphorylation at Ser727 through the MAPK or mTOR pathways (8,9). Stat3 isoform expression appears to reflect biological function as the relative expression levels of Stat3α (86 kDa) and Stat3β (79 kDa) depend on cell type, ligand exposure, or cell maturation stage (10). It is notable that Stat3β lacks the serine phosphorylation site within the carboxy-terminal transcriptional activation domain (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: The eukaryotic cell cycle is carefully controlled by protein phosphorylation involving a number of phosphatases, kinases, and co-factors. Cyclin-dependent kinases (CDKs/cdcs), Polo-like kinases (PLKs), and Aurora kinases have been shown to be major regulators of mitotic control (reviewed in 1,2). Protein aurora borealis (Bora), a co-factor of Aurora-A first identified in Drosophila, also plays a key roll in cell cycle progression (3). Bora levels are low in G0/G1, increasing in S-phase and peaking at G2 (4).Found to be conserved from C. elegans to humans, Bora is translocated from the nucleus to the cytoplasm upon activation of cdc2 at the onset of mitosis. Once present in the cytoplasm, Bora binds to and activates Aurora-A and PLK1 (3-5). It has been proposed that the binding of human Bora to PLK1 may lead to a conformational change in the protein that disrupts the autoinhibition by the Polo-Box Domain (PBD). This would allow for Thr210 on PLK1 to become more accessible for phosphorylation by Aurora-A (reviewed in 6). Active PLK1 then initiates the PLK1-cdc25-cdc2 positive feedback loop, leading to mitotic entry and the phosphorylation of Bora. Once phosphorylated in prophase, Bora is degraded allowing for normal mitotic progression (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Pyruvate kinase is a glycolytic enzyme that catalyses the conversion of phosphoenolpyruvate to pyruvate. In mammals, the M1 isoform (PKM1) is expressed in most adult tissues (1). The M2 isoform (PKM2) is an alternatively spliced variant of M1 that is expressed during embryonic development (1). Research studies found that cancer cells exclusively express PKM2 (1-3). PKM2 is shown to be essential for aerobic glycolysis in tumors, known as the Warburg effect (1). When cancer cells switch from the M2 isoform to the M1 isoform, aerobic glycolysis is reduced and oxidative phosphorylation is increased (1). These cells also show decreased tumorigenicity in mouse xenografts (1). Recent studies showed that PKM2 is not essential for all tumor cells (4). In the tumor model studied, PKM2 was found to be active in the non-proliferative tumor cell population and inactive in the proliferative tumor cell population (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The leukocyte Ig-like receptor subfamily B (LILRB) are type-I transmembrane glycoproteins containing ligand binding extracellular IgG-like domains and immunoreceptor tyrosine-based inhibition motifs (ITIMS) within the cytoplasmic domain, which recruit SHP protein tyrosine phosphatases, leading to transduction of signals that inhibit immune cell activation. Encoded within a region of chromosome 19 known as the leukocyte receptor complex, the LILRB subfamily of inhibitory receptors consists of LILRB1 to LILRB5, also referred to as CD85J, CD85D, CD85A, CD85K, and CD85C, respectively (1). There is mounting evidence that LILRBs function, in part, as a novel class of immune checkpoint receptors and support tumor growth through the transmission of inhibitory signals upon engagement of ligands expressed on tumor cells (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: RPA70 (HSSB, REPA1, RF-A, RP-A, p70) is a component of a heterotrimeric complex, composed of 70, 32/30 and 14 kDa subunits, collectively known as RPA. RPA is a single stranded DNA binding protein, whose DNA binding activity is believed to reside entirely in the 70 kDa subunit. The complex is required for almost all aspects of cellular DNA metabolism such as DNA replication (1-3), recombination, cell cycle and DNA damage checkpoints, and all major types of DNA repair including nucleotide excision, base excision, mismatch and double-strand break repairs (4-7). In response to genotoxic stress in eukaryotic cells, RPA has been shown to associate with the Rad9/Rad1/Hus1 (9-1-1) checkpoint complex (8). RPA is hyperphosphorylated upon DNA damage or replication stress by checkpoint kinases including ataxia telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK) (9-11). Phosphorylation of RPA32 occurs at serines 4, 8 and 33 (11). Hyperphosphorylation may alter RPA-DNA and RPA-protein interactions. In addition to the checkpoint partners, RPA interacts with a wide variety of protein partners, including proteins required for normal replication such as RCF, PCNA and Pol α, and also proteins involved in SV40 replication, such as DNA polymerase I and SV40 large T antigen (10,12).

$489
96 assays
1 Kit
The PathScan® Phospho-IKKβ (Ser177/181) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of IKKβ when phosphorylated at Ser177/181. A phospho-IKKβ (Ser177/181) rabbit mAb has been coated onto the microwells. After incubation with cell lysates, phospho-IKKβ (Ser177/181) protein is captured by the coated antibody. Following extensive washing, an IKKβ mouse detection mAb is added to detect the captured IKKβ protein. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for the developed color is proportional to the quantity of IKKβ phosphorylated at Ser177/181.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: The NF-κB/Rel transcription factors are present in the cytosol in an inactive state, complexed with the inhibitory IκB proteins (1-3). Most agents that activate NF-κB do so through a common pathway based on phosphorylation-induced, proteasome-mediated degradation of IκB (3-7). The key regulatory step in this pathway involves activation of a high molecular weight IκB kinase (IKK) complex whose catalysis is generally carried out by three tightly associated IKK subunits. IKKα and IKKβ serve as the catalytic subunits of the kinase and IKKγ serves as the regulatory subunit (8,9). Activation of IKK depends upon phosphorylation at Ser177 and Ser181 in the activation loop of IKKβ (Ser176 and Ser180 in IKKα), which causes conformational changes, resulting in kinase activation (10-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Reptin/RuvBL2 and Pontin/RuvBL1 are closely related members of the AAA+ (ATPase associated with diverse cellular activities) superfamily of proteins, and are putatively homologous to bacterial RuvB proteins that drive branch migration of Holliday junctions (1). Reptin and Pontin function together as essential components of chromatin remodeling and modification complexes, such as INO80, TIP60, SRCAP, and Uri1, which play key roles in regulating gene transcription (1,2). In their capacity as essential transcriptional co-regulators, Reptin and Pontin have both been implicated in oncogenic transformations, including those driven by c-Myc, β-catenin, and E1A (2-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Mindbomb homolog 1 (MIB1) is an E3 ligase that facilitates the ubiquitination and the subsequent endocytosis of the Notch ligands, Delta and Jagged (1,2). MIB1 appears to promote the ubiquitination and degradation of death-associated protein kinase (DAPK1) in vitro (3). Expression of MIB1 is seen in both adult and embryonic murine tissues (4). Recently, MIB1 was reported to regulate the extrinsic cell death pathway by binding to cellular FLICE-like inhibitory proteins (cFLIP-L and cFLIP-S), which reduces the interaction of caspase-8 with cFLIP and leads to cell death (5). MIB1 is also involved in T and marginal zone B (MZB) cell development in the lymphopoietic niches (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Mouse, Rat

Application Methods: Western Blotting

Background: Rho family GTPases are key regulators of diverse processes such as cytoskeletal organization, cell growth and differentiation, transcriptional regulation, and cell adhesion/motility. The activities of these proteins are controlled primarily through guanine nucleotide exchange factors (GEFs) that facilitate the exchange of GDP for GTP, promoting the active (GTP-bound) state, and GTPase activating proteins (GAPs) that promote GTP hydrolysis and the inactive (GDP-bound) state (1,2).The p190 RhoGAP proteins are widely expressed Rho family GAPs. p190-A has been characterized as a tumor suppressor, and research studies have shown that loss or rearrangement of the chromosomal region containing the gene for p190-A is linked to tumor development (3,4). p190-A binds the mitogen-inducible transcription factor TFII-I, sequestering it in the cytoplasm and inhibiting its activity. Phosphorylation of p190-A at Tyr308 reduces its affinity for TFII-I, relieving the inhibition (5). p190-A can also inhibit growth factor-induced gliomas in mice (6) and affect cleavage furrow formation and cytokinesis in cultured cells (7).Mice lacking p190-B RhoGAP show excessive Rho activation and a reduction in activation of the transcription factor CREB (8). Cells deficient in p190-B display defective adipogenesis (9). There is increasing evidence that p190 undergoes tyrosine phosphorylation, which activates its GAP domain (9-11). Levels of tyrosine phosphorylation are enhanced by Src overexpression (10,11). IGF-I treatment downregulates Rho through phosphorylation and activation of p190-B RhoGAP, thereby enhancing IGF signaling implicated in adipogenesis (9).

$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: Carbonic anhydrases (CA) are a family of ancient zinc metalloenzymes found in almost all living organisms. All CA can be divided into 3 distinct classes (α, β, and γ) that evolved independently and have no significant homology in sequence and overall folding. All functional CA catalyze the reversible hydration of CO2 into HCO3- and H+ and contain a zinc atom in the active sites essential for catalysis. There are many isoforms of CA in mammals and they all belong to the α class (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Pig, Rat

Application Methods: Western Blotting

Background: BAG6 (BCL2-associated athanogene-6), alternately known as BAT3 (HLA-B-associated transcript 3), was originally identified as a gene within the class III region of the human major histocompatibility complex, but has subsequently been found to exhibit protein chaperone activity. BAG6, in conjunction with other chaperone proteins and ubiquitin ligases, regulates protein stability and insertion of tail-anchored membrane proteins into the endoplasmic reticulum (1-3). The BAT3 complex, consisting of BAG6, TRC35 and Ubl4a localizes to ribosomes synthesizing membrane proteins and facilitates tailed-anchored protein capture by TRC40 and subsequent insertion of the nascent protein in to the ER membrane (4,5). BAG6 also plays a critical role in clearing cells of mis-folded and mis-localized peptides via endoplasmic reticulum-associated degradation and the ubiquitin-proteasome system (1,6,7). BAG6 may also act as a chaperone for glycoproteins through its interaction with DERLIN2 (8).In addition to its role as a chaperone, BAG6 has also been implicated in regulating chromatin structure and gene expression. For example, BAG6 and SET1A act as binding partners for BORIS to effect changes of chromatin structure and gene expression (9). Similarly, increased expression of BAG6 induces p300-mediated acetylation of p53, which is required for DNA damage response (10). BAG6 has also been found to interact with TGF-β, and in so doing acts as a positive regulator of TGF-β1 stimulation of type 1 collagen expression (11). BAG6 also suppresses bone morphogenic protein (BMP) signaling via its interaction with and regulation of small C-terminal domain phosphatase (SCP) that dephosphorylates SMAD proteins resulting in subsequent termination of BMP-mediated events (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Coat Protein Complex II (COPII) is composed of five cytosolic proteins: Sec23/24 complex, Sec13/31 complex, and Sar1. COPII coat is located at the ER/Golgi interface and is involved in transport of newly synthesized proteins from the ER to the Golgi apparatus (1). COPII formation is initiated through the binding of the activated G protein, Sar1, to the Sec23/24 complex, thereby forming a prebudding complex that directly binds target molecules (1-3). The prebudding complex further recruits Sec13/31 to form mature COPII coat (4,5). The Sec24 subunit of COPII coat is thought to play a critical role in cargo selection (2,6). It binds directly to cargo proteins at the ER and brings them to COPII vesicles through interaction with Sec23. There are four Sec24 isoforms in human cells: Sec24A, Sec24B, Sec24C, and Sec24D (7). In mice, mutations in Sec24B have been linked to developmental defects (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Structural maintenance of chromosomes 2 (SMC2) and 4 (SMC4) proteins are subunits of the condensin complex, which enables chromosome condensation and maintains the compaction of chromosomes as they separate to opposite poles during anaphase (1-3). In addition to regulating chromosome condensation, condensin is a general regulator of chromosome architecture and may function to regulate gene expression and DNA repair. SMC proteins contain a hallmark bipartite ATPase domain of the ABC ATPase superfamily, which consists of an N-terminal Walker A motif nucleotide-binding domain and C-terminal Walker B motif catalytic domain that interact to form a functional ATPase (1-3). The two ATPase domains are connected by two coiled coil domains separated by a central hinge region that facilitates protein-protein interactions between partnering SMC proteins. In the case of the condensin complex, SMC2 and SMC4 interact to form a functional ATPase required for chromatin condensation; however, the mechanism by which this ATPase activity regulates chromsome architecture is still being determined. In addition to SMC proteins, condensin contains three auxiliary subunits, which function to regulate condensin ATPase activity. Higher eukaryotes contain two distinct condensin complexes (condensin I and II), both of which contain SMC2 and SMC4 (1-3). Condensin I also contains the auxiliary subunits CAP-D2, CAP-G and CAP-H, while condensin II contains the related auxiliary proteins CAP-D3, CAP-G2 and CAP-H2. The two condensin complexes show different localization patterns during the cell cycle and on chromosomes and both are required for successful mitosis, suggesting distinct functions for each complex (1-3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Sphingosine kinases (SPHKs) catalyze the phosphorylation of sphingosine to form sphingosine-1-phosphate (S1P), a lipid mediator with both intra- and extracellular functions. Together with other sphingolipid metabolizing enzymes, SPHKs regulate the balance of the lipid mediators, ceramide, sphingosine, and S1P (1-4). Two distinct SPHK isoforms, SPHK1 and SPHK2, have been cloned and characterized (5,6). SPHK1 and SPHK2 are highly conserved and diversely expressed (7,8). The SPHKs are activated by G protein-coupled receptors, receptor tyrosine kinases, immunoglobulin receptors, cytokines, and other stimuli (9-12). The molecular mechanisms by which SPHK1 and SPHK2 are specifically regulated are complex and only partially understood.

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated NF-κB1 p105/p50 (D4P4D) Rabbit mAb #13586.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Tug (Tether containing UBX domain for GLUT4), also known as ASPL, ASPSCR1, RCC17, UBXD9, UBXN9, was first identified as a chromosomal translocation partner for TFE3 in patients with Alveolar soft part sarcoma (1) and contains an UBX-like domain in its C-terminal region. Tug is found to tether GLUT4 in intracellular vesicles and to release GLUT4 for cell surface translocation upon insulin stimulation (2). Stable Tug depletion or expression of a dominant negative form stimulates GLUT4 redistribution (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The Rab family of proteins includes small, monomeric GTPases essential for regulating intracellular vesicle trafficking. Members of the Rab3 subfamily, including Rab3A-3D, are involved in the exocytosis of neurotransmitters and hormones (1). Rab3A is primarily expressed in neurons (2), neuroendocrine cells (such as rat PC-12 cells), and in human pancreatic β cells (3,4). By acting as a molecular switch between active GTP-bound Rab3A and the inactive GDP-bound form, Rab3A inhibits synaptic vesicle and chromaffin granule secretion during late membrane release (5,6). Loss-of-function studies suggest Rab3A is involved in controlling synaptic vesicle targeting and docking at the active zone (7). Through binding to its direct effector Rabphillin, Rab3A also orchestrates the coupling between synaptic vesicle exocytosis and endocytosis (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Western Blotting

Background: CTD small phosphatase-like protein 2 (CTDSPL2, HSPC129) is a putative RNA-polymerase II carboxy-terminal domain (CTD) phosphatase (1) that belongs to a small subfamily of CTD phosphatases (2). The CTD of RNA polymerase II contains multiple Y-S-P-T-S-P-S repeats that are phosphorylated during the transcription cycle (3,4). In general, CTD phosphatases regulate the reversible CTD phosphorylation state of RNA-polymerase II at several stages of RNA synthesis and during post-transcriptional modification (4-6). CTDSPL2 has several structural and functional similarities to other CTD phosphatases, including FCP1, SCP1, DULLARD, and UBLCP1 (1,2).