Microsize antibodies for $99 | Learn More >>

Product listing: EpCAM (VU1D9) Mouse mAb (Pacific Blue™ Conjugate), UniProt ID P16422 #9032 to AMPA Receptor 3 (GluA 3) (D47E3) Rabbit mAb, UniProt ID P42263 #4676

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Pacific Blue™ fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated EpCAM (VU1D9) Mouse mAb #2929.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Epithelial cell adhesion and activating molecule (EpCAM/CD326) is a transmembrane glycoprotein that mediates Ca2+-independent, homophilic adhesions on the basolateral surface of most epithelial cells. EpCAM is not expressed in adult squamous epithelium, but it is highly expressed in adeno and squamous cell carcinomas (1). Research studies identified EpCAM as one of the first tumor-associated antigens, and it has long been a marker of epithelial and tumor tissue. Investigators have shown that EpCAM is highly expressed in cancer cells (reviewed in 2,3).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Na,K-ATPase α1 (D4Y7E) Rabbit mAb #23565.
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The Na,K-ATPase is an integral membrane heterodimer belonging to the P-type ATPase family. This ion channel uses the energy derived from ATP hydrolysis to maintain membrane potential by driving sodium export and potassium import across the plasma membrane against their electrochemical gradients. It is composed of a catalytic α subunit and a β subunit (reviewed in 1). Several phosphorylation sites have been identified for the α1 subunit. Tyr10 is phosphorylated by an as yet undetermined kinase (2), Ser16 and Ser23 are phosphorylated by PKC, and Ser943 is phosphorylated by PKA (3-5). All of these sites have been implicated in the regulation of enzyme activity in response to hormones and neurotransmitters, altering trafficking and kinetic properties of Na,K-ATPase. Altered phosphorylation in response to angiotensin II stimulates activity in the rat proximal tubule (6). Na,K-ATPase is also involved in other signal transduction pathways. Insulin regulates its localization in differentiated primary human skeletal muscle cells, and this regulation is dependent on ERK1/2 phosphorylation of the α subunit (7). Na,K-ATPase and Src form a signaling receptor complex that affects regulation of Src kinase activity and, subsequently, its downstream effectors (8,9).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: In multicellular organisms, intercellular junctions play essential roles in tissue integrity and maintenance of cell polarity. Tight junctions (TJs) form a continuous barrier to fluids across the epithelium and endothelium (reviewed in 1). Adherens junctions (AJs) are dynamic structures that form cell-cell contacts linking cells into a continuous sheet (reviewed in 2). The actin filament-binding protein, Afadin, binds to nectin forming a connection to the actin cytoskeleton (3). AJs are formed when nectin assembles cadherin at the cell-cell adhesion site and these junctions are then involved in the formation and maintenance of TJs (4,5). Afadin has two splice variants: l-afadin, which is ubiquitously expressed, and s-afadin, which is expressed predominantly in neural tissue. s-Afadin is a shorter form lacking one of the three proline-rich regions found in l-afadin, as well as the carboxyl-terminal F-actin binding region (6). Human s-afadin is identical to AF-6, the ALL-1 fusion partner involved in acute myeloid leukemias (7). Recent work has also shown that afadin is involved in controlling the directionality of cell movement when it is localized at the leading edge of moving cells (8,9).

$364
400 µl
This Cell Signaling Technology antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated Sepharose® beads. Phospho-Stat3 (Tyr705) (D3A7) XP® Rabbit mAb (Sepharose® Bead Conjugate) is useful for the immunoprecipitation of phospho-Stat3 (Tyr705). This antibody was tested using human cell lysates and is expected to exhibit the same species cross-reactivity as the unconjugated antibody (Phospho-Stat3 (Tyr705) (D3A7) XP® Rabbit mAb #9145).
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation

Background: The Stat3 transcription factor is an important signaling molecule for many cytokines and growth factor receptors (1) and is required for murine fetal development (2). Research studies have shown that Stat3 is constitutively activated in a number of human tumors (3,4) and possesses oncogenic potential (5) and anti-apoptotic activities (3). Stat3 is activated by phosphorylation at Tyr705, which induces dimerization, nuclear translocation, and DNA binding (6,7). Transcriptional activation seems to be regulated by phosphorylation at Ser727 through the MAPK or mTOR pathways (8,9). Stat3 isoform expression appears to reflect biological function as the relative expression levels of Stat3α (86 kDa) and Stat3β (79 kDa) depend on cell type, ligand exposure, or cell maturation stage (10). It is notable that Stat3β lacks the serine phosphorylation site within the carboxy-terminal transcriptional activation domain (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Western Blotting

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Kinesin superfamily proteins (KIFs) are molecular motors that drive directional, microtubule-dependent intracellular transport of membrane-bound organelles and other macromolecules (e.g. proteins, nucleic acids). The intracellular transport functions of KIFs are fundamentally important for a variety of cellular functions, including mitotic and meiotic division, motility/migration, hormone and neurotransmitter release, and differentiation (1-4). Disruptions to KIF-mediated intracellular transport have been linked with a variety of pathologies, ranging from tumorigenesis to defects in higher order brain function such as learning and memory (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Neural cell adhesion molecule L1 (NCAM-L1/L1CAM) is a single pass transmembrane glycoprotein member of the immunoglobulin superfamily, containing six amino-terminal extracellular Ig-like domains followed by five fibronectin type-III domains (1). NCAM-L1 is mainly expressed in the brain, and plays an important role in the developing nervous system, with involvement in neurite fasciculation and outgrowth, myelination, neuronal migration, and neuronal cell adhesion (2). Mutations in the NCAM-L1 gene cause varying degrees of neurological disease including X-linked hydrocephalus, MASA syndrome, spastic paraplegia type 1, and X-linked corpus callosum agenesis, together known as L1 syndrome (3). Apart from the nervous system, NCAM-L1 is overexpressed in many cancers and supports a poor prognosis by facilitating aggressive tumor growth, metastasis and chemoresistance (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation

Background: Cocaine- and amphetamine-regulated transcript (CART) peptides are neurotransmitters of 39 and 47 amino acids that are involved in a variety of physiological processes. The CART precursor, a polypeptide of 116 residues, requires prohormone/proprotein convertase-mediated endoproteolytic cleavage to produce the two active peptides (1). CART peptides are found in several neuroendocrine tissues such as the brain, pituitary, adrenals, and pancreas (2). Hypothalamic CART is regulated by leptin, and plays a role in appetite and feeding behavior (3). Mesolimbic CART is regulated by CREB and may play a role in drug abuse behaviors by mediating some of CREB effects (4). Pancreatic CART is found in islet endocrine cells and parasympathetic and sensory nerves. It inhibits glucose-stimulated insulin secretion and has been found to be up-regulated in beta cells in animal model of diabetes (5). A missense mutation in the corresponding CART gene can correlate with susceptibility to obesity and reduced resting energy expenditure (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: The Y-box binding protein 1 (YB1) belongs to a family of evolutionarily conserved, multifunctional Y-box proteins that bind single-stranded DNA and RNA and function as regulators of transcription, RNA metabolism, and protein synthesis (1). YB1 binds to Y-box sequences (TAACC) found in multiple gene promoters and can positively or negatively regulate transcription. YB1 activates genes associated with proliferation and cancer, such as cyclin A, cyclin B1, matrix metalloproteinase-2 (MMP-2), and the multi-drug resistance 1 (MDR1) gene (2-4). YB1 represses genes associated with cell death, including the Fas cell death-associated receptor and the p53 tumor suppressor gene (5-7). It also interacts with the RNA-splicing factor SRp30c and stabilizes interleukin-2 (IL-2) mRNA upon induction of T lymphocytes by IL-2 (8,9). The majority of YB1 protein localizes to the cytoplasm, with a minor pool found in the nucleus; however, nuclear localization appears to be critical for its role in promoting proliferation. Nuclear translocation is cell cycle regulated, with YB1 protein accumulating in the nucleus during G1/S phase (2). In addition, nuclear translocation is induced in response to extracellular stimuli such as hyperthermia and UV irradiation, or treatment of cells with thrombin, interferons, or insulin-like growth factor (IGF-I) (2,10). Treatment of the MCF7 breast cancer cell line with IGF-I results in Akt-mediated phosphorylation of YB1 at Ser102, which is required for nuclear translocation of YB1 and its ability to promote anchorage-independent growth (10). Research studies have shown that YB1 is overexpressed in many malignant tissues, including breast cancer, non-small cell lung carcinoma, ovarian adenocarcinomas, human osteosarcomas, colorectal carcinomas, and malignant melanomas. Investigators have shown that nuclear YB1 expression correlates with high levels of proliferation, drug resistance, and poor tumor prognosis (2,7,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The extracellular matrix (ECM) is a complex structure of secreted macromolecules surrounding mammalian organs and tissues. Controlled interactions between cells and the ECM are important in proliferation, migration, survival, polarity, and differentiation. Cells contact the ECM primarily through focal adhesion complexes, which contain integrins, as well as multiple adaptor and signaling proteins (1). The ILK/PINCH/Parvin (IPP) adaptor complex acts at the interface of the integrin/actin connection to regulate formation of focal adhesions and integrin signaling. Roles for IPP proteins outside of the IPP complex have been proposed, including regulation of gene expression (2,3).PINCH, also known as LIMS1, has been shown to function as a specific regulator of gene expression in glomerular podocytes in response to TGF-β1 (4). Researchers have shown that PINCH is highly expressed in some human tumors, and that PINCH can promote resistance to ionizing radiation through activation of Akt (5,6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The ezrin, radixin, and moesin (ERM) proteins function as linkers between the plasma membrane and the actin cytoskeleton and are involved in cell adhesion, membrane ruffling, and microvilli formation (1). ERM proteins undergo intra or intermolecular interaction between their amino- and carboxy-terminal domains, existing as inactive cytosolic monomers or dimers (2). Phosphorylation at a carboxy-terminal threonine residue (Thr567 of ezrin, Thr564 of radixin, Thr558 of moesin) disrupts the amino- and carboxy-terminal association and may play a key role in regulating ERM protein conformation and function (3,4). Phosphorylation at Thr567 of ezrin is required for cytoskeletal rearrangements and oncogene-induced transformation (5). Ezrin is also phosphorylated at tyrosine residues upon growth factor stimulation. Phosphorylation of Tyr353 of ezrin transmits a survival signal during epithelial differentiation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Cadherins are a superfamily of transmembrane glycoproteins that contain cadherin repeats of approximately 100 residues in their extracellular domain. Cadherins mediate calcium-dependent cell-cell adhesion and play critical roles in normal tissue development (1). The classic cadherin subfamily includes N-, P-, R-, B-, and E-cadherins, as well as about ten other members that are found in adherens junctions, a cellular structure near the apical surface of polarized epithelial cells. The cytoplasmic domain of classical cadherins interacts with β-catenin, γ-catenin (also called plakoglobin), and p120 catenin. β-catenin and γ-catenin associate with α-catenin, which links the cadherin-catenin complex to the actin cytoskeleton (1,2). While β- and γ-catenin play structural roles in the junctional complex, p120 regulates cadherin adhesive activity and trafficking (1-4). Investigators consider E-cadherin an active suppressor of invasion and growth of many epithelial cancers (1-3). Research studies indicate that cancer cells have upregulated N-cadherin in addition to loss of E-cadherin. This change in cadherin expression is called the "cadherin switch." N-cadherin cooperates with the FGF receptor, leading to overexpression of MMP-9 and cellular invasion (3). Research studies have shown that in endothelial cells, VE-cadherin signaling, expression, and localization correlate with vascular permeability and tumor angiogenesis (5,6). Investigators have also demonstrated that expression of P-cadherin, which is normally present in epithelial cells, is also altered in ovarian and other human cancers (7,8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The AP-2 coat assembly protein complex is an important component of clathrin-coated pits involved in receptor-mediated endocytosis at the plasma membrane (1-3). Each AP-2 heterotetramer is composed of α, β, μ, and σ protein subunits. The 50 kDa μ subunit (AP-2μ, AP2M1) is located at the core of the AP-2 complex and mediates interaction between the cargo protein and the clathrin-coated pit (1-4). The carboxy-terminal AP2M1 region recognizes the tyrosine-based, endocytotic sorting motif YXXφ found in cargo proteins and helps to bring the cargo protein to the clathrin-coated pit. Non-canonical, tyrosine-based endocytotic sorting signals can also promote interaction between cargo proteins and AP2M1 (5,6). AP2M1 plays an essential role in molecular signaling as it couples receptor-mediated endocytosis and pathways involving membrane receptors (7-9), matrix metalloproteinases (10), and ion channel proteins (11). Phosphorylation of specific AP2M1 residues and binding of lipids to this adaptor protein can regulate AP2M1 activity (12,13). Phosphorylation of AP2M1 at Thr156 by adaptor-associated kinase 1 (AAK1) stimulates affinity binding of AP2M1 to cargo protein signals (14).

$489
96 assays
1 Kit
The PathScan® Phospho-AMPKα (Thr172) Chemiluminescent Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of phospho-AMPKα (Thr172) protein with a chemiluminescent readout. Chemiluminescent ELISAs often have a wider dynamic range and higher sensitivity than conventional chromogenic detection. This chemiluminescent ELISA, which is offered in low volume microplates, shows increased signal and sensitivity while using smaller samples. An AMPKα Rabbit mAb has been coated onto the microwells. After incubation with cell lysates, AMPKα (phospho and nonphospho) is captured by the coated antibody. Following extensive washing, a Phospho-AMPKα (Thr172) Mouse Detection Antibody is added to detect the captured phospho-AMPKα (Thr172) protein. HRP-linked, anti-mouse antibody is then used to recognize the bound detection antibody. Chemiluminescent reagent is added for signal development. The magnitude of light emission, measured in relative light units (RLU), is proportional to the quantity of phospho-AMPKα (Thr172) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse

Background: AMP-activated protein kinase (AMPK) is highly conserved from yeast to plants and animals and plays a key role in the regulation of energy homeostasis (1). AMPK is a heterotrimeric complex composed of a catalytic α subunit and regulatory β and γ subunits, each of which is encoded by two or three distinct genes (α1, 2; β1, 2; γ1, 2, 3) (2). The kinase is activated by an elevated AMP/ATP ratio due to cellular and environmental stress, such as heat shock, hypoxia, and ischemia (1). The tumor suppressor LKB1, in association with accessory proteins STRAD and MO25, phosphorylates AMPKα at Thr172 in the activation loop, and this phosphorylation is required for AMPK activation (3-5). AMPKα is also phosphorylated at Thr258 and Ser485 (for α1; Ser491 for α2). The upstream kinase and the biological significance of these phosphorylation events have yet to be elucidated (6). The β1 subunit is post-translationally modified by myristoylation and multi-site phosphorylation including Ser24/25, Ser96, Ser101, Ser108, and Ser182 (6,7). Phosphorylation at Ser108 of the β1 subunit seems to be required for the activation of AMPK enzyme, while phosphorylation at Ser24/25 and Ser182 affects AMPK localization (7). Several mutations in AMPKγ subunits have been identified, most of which are located in the putative AMP/ATP binding sites (CBS or Bateman domains). Mutations at these sites lead to reduction of AMPK activity and cause glycogen accumulation in heart or skeletal muscle (1,2). Accumulating evidence indicates that AMPK not only regulates the metabolism of fatty acids and glycogen, but also modulates protein synthesis and cell growth through EF2 and TSC2/mTOR pathways, as well as blood flow via eNOS/nNOS (1).

Molecular Weight:448.95 g/mol

Background: Bisindolylmaleimide I (BIS) is a potent inhibitor of PKC (1,2). In vitro the IC50 of BIS is 10-20 nM for PKCα/β/γ and 100-200 nM for PKCδ/ε isoforms. The in vitro IC50 for PKCζ is about 6 μM, indicating that BIS is a very weak inhibitor for this isoform. In in vivo cellular assays the IC50 of BIS for PKC is between 0.2-2 μM (1,3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Cadherins are a superfamily of transmembrane glycoproteins that contain cadherin repeats of approximately 100 residues in their extracellular domain. Cadherins mediate calcium-dependent cell-cell adhesion and play critical roles in normal tissue development (1). The classic cadherin subfamily includes N-, P-, R-, B-, and E-cadherins, as well as about ten other members that are found in adherens junctions, a cellular structure near the apical surface of polarized epithelial cells. The cytoplasmic domain of classical cadherins interacts with β-catenin, γ-catenin (also called plakoglobin), and p120 catenin. β-catenin and γ-catenin associate with α-catenin, which links the cadherin-catenin complex to the actin cytoskeleton (1,2). While β- and γ-catenin play structural roles in the junctional complex, p120 regulates cadherin adhesive activity and trafficking (1-4). Investigators consider E-cadherin an active suppressor of invasion and growth of many epithelial cancers (1-3). Research studies indicate that cancer cells have upregulated N-cadherin in addition to loss of E-cadherin. This change in cadherin expression is called the "cadherin switch." N-cadherin cooperates with the FGF receptor, leading to overexpression of MMP-9 and cellular invasion (3). Research studies have shown that in endothelial cells, VE-cadherin signaling, expression, and localization correlate with vascular permeability and tumor angiogenesis (5,6). Investigators have also demonstrated that expression of P-cadherin, which is normally present in epithelial cells, is also altered in ovarian and other human cancers (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Translationally controlled tumor protein (TCTP/p23/HRF) is a ubiquitously expressed and highly conserved protein involved in various cellular processes, such as its role as a histamine releasing factor in chronic allergic disease (1). TCTP binds tubulin in a cell cycle dependent manner and is associated with the mitotic spindle (2). In addition, TCTP interacts with the actin cytoskeleton to regulate cell shape (3). In mitosis, TCTP is phosphorylated by PLK at Ser46, decreasing microtubule stability (4,5). TCTP interacts with the small GTPase Rheb, possibly acting as a GEF, thereby activating the TORC1 pathway and controlling cell growth and proliferation (6,7). TCTP has also been shown to be involved in apoptosis and cell stress (8-11). In cultured cells, reduction in TCTP expression can cause loss of the malignant phenotype (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Succinyl-CoA synthetase α subunit (SUCLG1) catalyzes the conversion of succinate to succinyl-CoA and plays a key role in the citric acid cycle (1,2). Deficiency of this enzyme leads to a variety of diseases including fatal infantile lactic acidosis (3) and mitochondrial hepatoencephalomyopathy (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Vav proteins belong to the Dbl family of guanine nucleotide exchange factors (GEFs) for Rho/Rac small GTPases. The three identified mammalian Vav proteins (Vav1, Vav2 and Vav3) differ in their expression. Vav1 is expressed only in hematopoietic cells and is involved in the formation of the immune synapse. Vav2 and Vav3 are more ubiquitously expressed. Vav proteins contain the Dbl homology domain, which confers GEF activity, as well as protein interaction domains that allow them to function in pathways regulating actin cytoskeleton organization (reviewed in 1). Phosphorylation stimulates the GEF activity of Vav protein towards Rho/Rac (2,3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: p53-binding protein 1 (53BP1) was originally identified as a p53 binding partner that could enhance the transcriptional activity of p53 (1,2). 53BP1 consists of two BRCA1 carboxy terminal (BRCT) domains that allow for binding to p53 and a separate domain responsible for binding to phosphorylated histone H2A.X (3). 53BP1 rapidly translocates to nuclear foci following treatment of cells with ionizing radiation (IR) or radiomimetic agents that cause DNA double strand breaks (DSBs) (4,5). Because of this localization to DSBs and homology to the yeast protein Rad9, a role for 53BP1 in DSB repair has been proposed. Recruitment of 53BP1 to sites of DNA damage has been demonstrated to be independent of ATM, NBS1, and DNA-PK (4) and retention of 53BP1 at DNA breaks requires phosphorylated H2A.X (6). In cells lacking 53BP1, phosphorylation of ATM substrates is reduced, suggesting that 53BP1 is upstream of ATM (7). In response to IR, phosphorylation of 53BP1 at serines 6, 25, 29, and 784 by ATM has been demonstrated, but phosphorylation at these sites is not required for localization of 53BP1 to sites of DSBs (6). Phosphorylation of 53BP1 at Ser1618 has been reported to be enriched in human cells arrested in mitosis (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The c-Abl proto-oncogene encodes a nonreceptor protein tyrosine kinase that is ubiquitously expressed and highly conserved in metazoan evolution. c-Abl protein is distributed in both the nucleus and the cytoplasm of cells. It is implicated in regulating cell proliferation, differentiation, apoptosis, cell adhesion, and stress responses (1-3). c-Abl kinase activity is increased in vivo by diverse physiological stimuli including integrin activation; PDGF stimulation; and binding to c-Jun, Nck, and RFX1 (2,4). The in vivo mechanism for regulation of c-Abl kinase activity is not completely understood. Tyr245 is located in the linker region between the SH2 and catalytic domains. This positioning is conserved among Abl family members. Phosphorylation at Tyr245 is involved in the activation of c-Abl kinase (5). In addition, phosphorylation at Tyr412, which is located in the kinase activation loop of c-Abl, is required for kinase activity (6).

$327
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-Smad1/5 (Ser463/465) (41D10) Rabbit mAb #9516.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Bone morphogenetic proteins (BMPs) constitute a large family of signaling molecules that regulate a wide range of critical processes including morphogenesis, cell-fate determination, proliferation, differentiation, and apoptosis (1,2). BMP receptors are members of the TGF-β family of Ser/Thr kinase receptors. Ligand binding induces multimerization, autophosphorylation, and activation of these receptors (3-5). They subsequently phosphorylate Smad1 at Ser463 and Ser465 in the carboxy-terminal motif SSXS, as well as Smad5 and Smad9 (Smad8) at their corresponding sites. These phosphorylated Smads dimerize with the coactivating Smad4 and translocate to the nucleus, where they stimulate transcription of target genes (5).MAP kinases and CDKs 8 and 9 phosphorylate residues in the linker region of Smad1, including Ser206. The phosphorylation of Ser206 recruits Smurf1 to the linker region and leads to the degradation of Smad1 (6). Phosphorylation of this site also promotes Smad1 transcriptional action by recruiting YAP to the linker region (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 20S proteasome is the major proteolytic enzyme complex involved in intracellular protein degradation. It consists of four stacked rings, each with seven distinct subunits. The two outer layers are identical rings composed of α subunits (called PSMAs), and the two inner layers are identical rings composed of β subunits. While the catalytic sites are located on the β rings (1-3), the α subunits are important for assembly and as binding sites for regulatory proteins (4). Seven different α and ten different β proteasome genes have been identified in mammals (5). PA700, PA28, and PA200 are three major protein complexes that function as activators of the 20S proteasome. PA700 binds polyubiquitin with high affinity and associates with the 20S proteasome to form the 26S proteasome, which preferentially degrades poly-ubiquitinated proteins (1-3). The proteasome has a broad substrate spectrum that includes cell cycle regulators, signaling molecules, tumor suppressors, and transcription factors. By controlling the degradation of these intracellular proteins, the proteasome functions in cell cycle regulation, cancer development, immune responses, protein folding, and disease progression (6-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: FAM129B/Niban-like protein 1 (family with sequence similarity 129, member B) belongs to a poorly characterized family of Niban proteins that also includes FAM129A/Niban and FAM129C/Niban-like protein 2. FAM129A/Niban is implicated in the ER stress response and is upregulated at the protein level in thyroid carcinoma (1,2). FAM129C/Niban-like protein 2 is preferentially expressed in B-cells and is one of five biomarkers upregulated in whole blood from patients with colorectal carcinoma (3,4). FAM129B is broadly expressed and has been shown to be a downstream target of B-Raf in melanoma cells (5). Though FAM129B does not appear to regulate cell growth and division, phosphorylation of FAM129B by B-Raf is essential for the invasive potential of melanoma and non-melanoma cell lines (5). Deletion of FAM129B in melanoma cells significantly impairs B-Raf/MEK/Erk-dependent invasion into the extracellular matrix (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The 26S proteasome is a highly abundant proteolytic complex involved in the degradation of ubiquitinated substrate proteins. It consists largely of the 20S catalytic core particle (CP) and the 19S/PA700 regulatory particle (RP) that caps either end of the CP. The CP consists of two stacked heteroheptameric β-rings (β1-7) that contain three catalytic β-subunits flanked on either side by two heteroheptameric α-rings (α1-7). The RP includes multimeric base and lid complexes. The RP base includes a heterohexameric ring of ATPase subunits that unfold the substrate and open the α-subunit gate to expose the substrate to the catalytic β-subunits. The lid consists of ubiquitin receptors and DUBs that recruit ubiquitinated substrates and modify ubiquitin chain topology (1,2). Proteasome activity modulators, such as PA28/11S REG, bind the 20S CP cylinder end and open the CP channel (1,2).Proteasome maturation protein (POMP, proteassemblin, hUMP1) is an integral factor essential for assembly of the 20S catalytic core particle during mammalian proteasome biogenesis. POMP promotes heteroheptameric β-ring formation and dimerization of half-proteasomes during core particle assembly. The POMP protein undergoes proteasomal degradation following 20S CP complex assembly and activation (3-6). Research studies suggest that POMP is required for CP assembly for both constitutive proteasomes and immunoproteasomes, and that the assembly focal point resides at the endoplasmic reticulum (6-8). A single nucleotide deletion in the 5' UTR of POMP results in altered epidermal POMP distribution and the autosomal recessive skin disorder known as KLICK syndrome (9).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated β-Catenin (D10A8) XP® Rabbit mAb #8480.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The HIV-1 viral protein R (Vpr)-binding protein (VPRBP, DCAF1) is a substrate-specific adaptor for the CUL4-based ubiquitin ligase complex that consists of CUL4A, RBX1, and DDB1 (1). VPRBP protein structure contains a central LIS1 homology (LisH) motif responsible for dimerization, and two carboxy-terminal WD-40 motifs involved in Vpr and DDB1 binding (2-4). Research studies demonstrate that VPRBP plays a role in hepatic lipid metabolism by promoting the ubiquitin-dependent proteasomal degradation of the TR4 nuclear receptor, which is involved in lipid homeostasis (5). The VPRBP protein plays a role in mammalian germ cell development through regulation of TET methylcytosine dioxygenase activation (6). Additional studies show that VPRBP exhibits kinase activity and phosphorylates histone H2A at Ser120, which blocks tumor suppressor gene transcription (7). The tumor suppressor Merlin/NF2 inhibits tumorigenesis through interaction with and suppression of the CUL4A-RBX1-DDB1-VPRBP complex (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNP C1/C2) has multiple biological functions including transcriptional regulation, DNA repair, and RNA processing. hnRNP C1/C2 acts as a ‘molecular ruler’ in the mRNA processing pathway, committing nascent transcripts from the chromatin template to the mRNA export pathway once the nascent transcript becomes longer than 200-300 nucleotides (1). hnRNP C1/C2 associates with SWI/SNF and NurD family members to form the locus control region (LCR)-associated remodeling complex (LARC), which binds to β-globin gene promoter to prevent transcriptional silencing. Studies indicate that without hnRNP C1/C2, LARC does not associate with its target DNA sequence (2,3). hnRNP C1/C2 and other hnRNP family members interact with DNA damage response (DDR) proteins (4). hnRNP proteins regulate double stranded break (DSB) repair by promoting either homologous recombination (HR) or non-homologous end joining (NHEJ) (4). hnRNP C1/C2 downregulates the expression of miR-21, which leads to the increased expression of programmed cell death 4 (PDCD4) protein in glioblastoma multiforme (GBM) (5). Research studies have shown that silencing of hnRNP C1/C2 renders GBM cells more susceptible to apoptosis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Six transmembrane epithelial antigen of the prostate 1 (STEAP1) is a transmembrane protein abundantly expressed in normal prostate epithelial cells (1). It is a metalloreductase that reduces Fe3+ to Fe2+ and Cu2+ to Cu1+ (2). STEAP1 is also reportedly overexpressed in multiple tumor types, and has been used as a cell surface biomarker for prostate cancer and Ewing's sarcoma (3-6). Peptides derived from STEAP1 protein have been shown to induce an antigen-specific cytotoxic T lymphocyte (CTL) response that can kill tumor cells expressing STEAP1 (7). These finding are the basis for research studies examining the efficacy of antibody-drug conjugates (ADCs) targeting STEAP1 (8,9).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: AMPA- (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), kainite- and NMDA- (N-methyl-D-aspartate) receptors are the three main families of ionotropic glutamate-gated ion channels. AMPA receptors (AMPARs) are comprised of four subunits (GluR 1-4) that assemble as homo- or hetero-tetramers and mediate the majority of fast excitatory transmissions in the CNS. AMPARs are implicated in synapse formation, stabilization and plasticity. Post-transcriptional modifications (alternative splicing and nuclear RNA editing) and post-translational modifications (glycosylation, phoshorylation) result in a very large number of permutations, fine-tuning the kinetic properties of AMPARs (1). GluR 3 knockout mice exhibited normal basal synaptic transmission and long-term depression (LTD) but enhanced long-term potentiation (LTP). In contrast, GluR 2/3 double knockout mice are impaired in basal synaptic transmission (2). Aberrant GluR 3 expression or activity is implicated in a number of diseases, including autoimmune epilepsy, X-linked mental retardation, Rett's syndrome, amyotrophic lateral sclerosis and Alzheimer disease (3).