Interested in promotions? | Click here >>

Product listing: Perifosine #14240 to Phospho-PAR-4 (Thr163) Antibody, UniProt ID Q96IZ0 #2329

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Nucleostemin (GNL3) is a member of the MMR1/HSR1 GTP-binding protein family. It is essential in early embryogenesis (1) and investigators have shown that nucleostemin participates in the control of stem and cancer cell cycle proliferation (2), possibly through regulation of p53 activity (3). Nucleostemin has been found to be expressed in CNS stem cells, embryonic stem cells, and several cancer cell lines, and is localized to both the nucleus and the nucleolus in a cell-cycle dependent manner (4).

PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur (1). For more information on PTMScan® Proteomics Services, please visit www.cellsignal.com/common/content/content.jsp?id=ptmscan-services.
$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Endothelial nitric-oxide synthase (eNOS) is an important enzyme in the cardiovascular system. It catalyzes the production of nitric oxide (NO), a key regulator of blood pressure, vascular remodeling, and angiogenesis (1,2). The activity of eNOS is regulated by phosphorylation at multiple sites. The two most thoroughly studied sites are the activation site Ser1177 and the inhibitory site Thr495 (3). Several protein kinases including Akt/PKB, PKA, and AMPK activate eNOS by phosphorylating Ser1177 in response to various stimuli (4,5). In contrast, bradykinin and H2O2 activate eNOS activity by promoting both Ser1177 phosphorylation and Thr495 dephosphorylation (6,7).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated HIF-1α (D1S7W) XP® Rabbit mAb #36169.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Flow Cytometry

Background: Hypoxia-inducible factor 1 (HIF1) is a heterodimeric transcription factor that plays a critical role in the cellular response to hypoxia (1). The HIF1 complex consists of two subunits, HIF-1α and HIF-1β, which are basic helix-loop-helix proteins of the PAS (Per, ARNT, Sim) family (2). HIF1 regulates the transcription of a broad range of genes that facilitate responses to the hypoxic environment, including genes regulating angiogenesis, erythropoiesis, cell cycle, metabolism, and apoptosis. The widely expressed HIF-1α is typically degraded rapidly in normoxic cells by the ubiquitin/proteasomal pathway. Under normoxic conditions, HIF-1α is proline hydroxylated leading to a conformational change that promotes binding to the von Hippel Lindau protein (VHL) E3 ligase complex; ubiquitination and proteasomal degradation follows (3,4). Both hypoxic conditions and chemical hydroxylase inhibitors (such as desferrioxamine and cobalt) inhibit HIF-1α degradation and lead to its stabilization. In addition, HIF-1α can be induced in an oxygen-independent manner by various cytokines through the PI3K-AKT-mTOR pathway (5-7).HIF-1β is also known as AhR nuclear translocator (ARNT) due to its ability to partner with the aryl hydrocarbon receptor (AhR) to form a heterodimeric transcription factor complex (8). Together with AhR, HIF-1β plays an important role in xenobiotics metabolism (8). In addition, a chromosomal translocation leading to a TEL-ARNT fusion protein is associated with acute myeloblastic leukemia (9). Studies also found that ARNT/HIF-1β expression levels decrease significantly in pancreatic islets from patients with type 2 diabetes, suggesting that HIF-1β plays an important role in pancreatic β-cell function (10).

$262
3 nmol
300 µl
SignalSilence® SHP-2 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit SHP-2 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: SHP-2 (PTPN11) is a ubiquitously expressed, nonreceptor protein tyrosine phosphatase (PTP). It participates in signaling events downstream of receptors for growth factors, cytokines, hormones, antigens, and extracellular matrices in the control of cell growth, differentiation, migration, and death (1). Activation of SHP-2 and its association with Gab1 is critical for sustained Erk activation downstream of several growth factor receptors and cytokines (2). In addition to its role in Gab1-mediated Erk activation, SHP-2 attenuates EGF-dependent PI3 kinase activation by dephosphorylating Gab1 at p85 binding sites (3). SHP-2 becomes phosphorylated at Tyr542 and Tyr580 in its carboxy-terminus in response to growth factor receptor activation (4). These phosphorylation events are thought to relieve basal inhibition and stimulate SHP-2 tyrosine phosphatase activity (5). Mutations in the corresponding gene result in a pair of clinically similar disorders (Noonan syndrome and LEOPARD syndrome) that may result from abnormal MAPK regulation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Wiskott-Aldrich syndrome proteins (WASPs) mediate actin dynamics by activating the Arp2/3 actin nucleation complex in response to activated Rho family GTPases. In mammals, five WASP family members have been described. Hematopoietic WASP and ubiquitously expressed N-WASP are autoinhibited in unstimulated cells. Upon stimulation they are activated by cdc42, which relieves the autoinhibition in conjunction with phosphatidyl inositol 4,5-bisphosphate. Three WAVE (Wasf, SCAR) family proteins are similar in sequence to WASP and N-WASP but lack the WASP/N-WASP autoinhibition domains and are indirectly activated by Rac (reviewed in 1). Both WASP and WAVE functions appear to be essential, as knockout of either N-WASP or Scar-2 in mice results in cardiac and neuronal defects and embryonic lethality (2,3). Loss of WASP results in immune system defects and fewer immune cells (4). WAVE-2 (WASF2) is widely distributed, while WAVE-1 and WAVE-3 are strongly expressed in brain (5). WAVE-3 may act as a tumor suppressor in neuroblastoma, a childhood disease of the sympathetic nervous system (6). Increased expression of WAVE-3 is seen in breast cancer, and studies in breast adenocarcinoma cells indicate that WAVE-3 regulates breast cancer progression, invasion and metastasis through the p38 mitogen-activated protein kinase (MAPK) pathway (7,8).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated E-Cadherin (4A2) Mouse mAb #14472.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: Cadherins are a superfamily of transmembrane glycoproteins that contain cadherin repeats of approximately 100 residues in their extracellular domain. Cadherins mediate calcium-dependent cell-cell adhesion and play critical roles in normal tissue development (1). The classic cadherin subfamily includes N-, P-, R-, B-, and E-cadherins, as well as about ten other members that are found in adherens junctions, a cellular structure near the apical surface of polarized epithelial cells. The cytoplasmic domain of classical cadherins interacts with β-catenin, γ-catenin (also called plakoglobin), and p120 catenin. β-catenin and γ-catenin associate with α-catenin, which links the cadherin-catenin complex to the actin cytoskeleton (1,2). While β- and γ-catenin play structural roles in the junctional complex, p120 regulates cadherin adhesive activity and trafficking (1-4). Investigators consider E-cadherin an active suppressor of invasion and growth of many epithelial cancers (1-3). Research studies indicate that cancer cells have upregulated N-cadherin in addition to loss of E-cadherin. This change in cadherin expression is called the "cadherin switch." N-cadherin cooperates with the FGF receptor, leading to overexpression of MMP-9 and cellular invasion (3). Research studies have shown that in endothelial cells, VE-cadherin signaling, expression, and localization correlate with vascular permeability and tumor angiogenesis (5,6). Investigators have also demonstrated that expression of P-cadherin, which is normally present in epithelial cells, is also altered in ovarian and other human cancers (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Host cell factor C1 (HCFC1) was first identified as the host cell factor for human herpes simplex virus infection. HCFC1 and the viral protein VP16 belong to a multi-protein complex that promotes transcription of viral immediate early genes (1). The relatively large HCFC1 protein contains 6 centrally located 26 amino acid repeats that can be O-GlcNAcylated and subjected to O-linked beta-N-acetylglucosamine transferase (OGT) cleavage (2-4). The resulting amino-terminal (HCFC1-N) and carboxy-terminal (HCFC1-C) fragments are non-covalently associated and play important roles in cell cycle regulation. The HCFC1-N peptide facilitates progression through the G1 phase of the cell cycle while HCFC1-C enables proper mitosis and cytokinesis during the M phase (5-7). As HCFC1 plays an important role in neurodevelopment, mutations in the corresponding gene are associated with neurodevelopmental disorders (e.g., intellectual disability) in humans (8).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated E-Cadherin (24E10) Rabbit mAb #3195.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Cadherins are a superfamily of transmembrane glycoproteins that contain cadherin repeats of approximately 100 residues in their extracellular domain. Cadherins mediate calcium-dependent cell-cell adhesion and play critical roles in normal tissue development (1). The classic cadherin subfamily includes N-, P-, R-, B-, and E-cadherins, as well as about ten other members that are found in adherens junctions, a cellular structure near the apical surface of polarized epithelial cells. The cytoplasmic domain of classical cadherins interacts with β-catenin, γ-catenin (also called plakoglobin), and p120 catenin. β-catenin and γ-catenin associate with α-catenin, which links the cadherin-catenin complex to the actin cytoskeleton (1,2). While β- and γ-catenin play structural roles in the junctional complex, p120 regulates cadherin adhesive activity and trafficking (1-4). Investigators consider E-cadherin an active suppressor of invasion and growth of many epithelial cancers (1-3). Research studies indicate that cancer cells have upregulated N-cadherin in addition to loss of E-cadherin. This change in cadherin expression is called the "cadherin switch." N-cadherin cooperates with the FGF receptor, leading to overexpression of MMP-9 and cellular invasion (3). Research studies have shown that in endothelial cells, VE-cadherin signaling, expression, and localization correlate with vascular permeability and tumor angiogenesis (5,6). Investigators have also demonstrated that expression of P-cadherin, which is normally present in epithelial cells, is also altered in ovarian and other human cancers (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The methylation state of lysine residues in histone proteins is a major determinant of the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (1,2). Jumonji C (JmjC) domain-containing proteins represent the largest class of potential histone demethylase proteins (3). The JmjC domain of several proteins has been shown to catalyze the demethylation of mono-, di-, and tri-methyl lysine residues via an oxidative reaction that requires iron and α-ketoglutarate (3). Based on homology, both humans and mice contain at least 30 such proteins, which can be divided into seven separate families (3). The JMJD1 (Jumonji domain-containing protein 1) family, also known as JHDM2 (JmjC domain-containing histone demethylation protein 2) family, contains four members: hairless (HR), JMJD1A/JHDM2A, JMJD1B/JHDM2B, and JMJD1C/JHDM2C. Hairless is expressed in the skin and brain and acts as a co-repressor of the thyroid hormone receptor (4-6). Mutations in the hairless gene cause alopecia in both mice and humans (4,5). JMJD1A is expressed in meiotic and post-meiotic male germ cells, contributes to androgen receptor-mediated gene regulation, and is required for spermatogenesis (7-9). It has also been identified as a downstream target of OCT4 and STAT3 and is critical for the regulation of self-renewal in embryonic stem cells (10,11). JMJD1B is a more widely expressed family member and is frequently deleted in myeloid leukemia (12). JMJD1C (also known as TRIP8) is a co-factor of both the androgen and thyroid receptors and has a potential link to autism (13-15). Members of the JMJD1/JHDM2 family have been shown to demethylate mono-methyl and di-methyl histone H3 (Lys9) (3,8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Macrophage-colony stimulating factor (M-CSF, CSF-1) receptor is an integral membrane tyrosine kinase encoded by the c-fms proto-oncogene. M-CSF receptor is expressed in monocytes (macrophages and their progenitors) and drives growth and development of this blood cell lineage. (1-3). Binding of M-CSF to its receptor induces receptor dimerization, activation, and autophosphorylation of cytoplasmic tyrosine residues used as docking sites for SH2-containing signaling proteins (4). There are at least five major tyrosine autophosphorylation sites. Tyr723 (Tyr721 in mouse) is located in the kinase insert (KI) region. Phosphorylated Tyr723 binds the p85 subunit of PI3 kinase as well as PLCγ2 (5). Phosphorylation of Tyr809 provides a docking site for Shc (5). Overactivation of this receptor can lead to a malignant phenotype in various cell systems (6). The activated M-CSF receptor has been shown to be a predictor of poor outcome in advanced epithelial ovarian carcinoma (7) and breast cancer (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Ch-TOG (colonic hepatic tumor overexpressed gene)/CKAP5 (cytoskeleton-associated protein 5) is a microtubule stabilizing protein involved in the organization of mitotic spindle poles through interaction with the transforming acid coiled-coil protein, TACC3 (1). Ch-TOG and TACC3 also interact with the membrane trafficking protein clathrin, and this interaction is thought to be required for clathrin’s mitotic function in crosslinking microtubules in the mitotic spindle (2). Researchers have found that expression levels of both TACC3 and ch-TOG are correlated with human diseases such as glioblastoma and hepatic carcinoma (3). A genome-wide siRNA screen identified ch-TOG and other G2/M phase regulators as potential contributors to head and neck squamous cell carcinoma (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: DUSP3, also known as VHR (VH1 related) is a small dual-specific phosphatase with specificity for MAP kinase ERK1/2 and JNK, but not for p38 MAPK (1,2). Unlike most of the dual-specific phosphatases, which have inducible expression patterns, DUSP3 is constitutively expressed (2). In antigen stimulated T cells, DUSP3 is phosphorylated by ZAP-70 at Tyr138 (3). Tyr138 phosphorylation is required for DUSP3 to down-regulate the ERK and JNK pathways (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: PTP-PEST is a ubiquitously expressed cytosolic protein tyrosine phosphatase with multiple proline-rich regions that appear to be the docking sites for PTP-PEST binding partners or substrates (1). PTP-PEST regulates fibroblast adhesion, migration, and cytokinesis through its association with and dephosphorylation of p130 Cas, paxillin, PSTPIP1, WASP, and other adhesion molecules (1-5). By modulating phosphorylation states of Shc, Pyk2, Fak, and WASP, PTP-PEST negatively regulates lymphocyte activation (1,6). In mammary epithelial cells, EGF facilitates the dephosphorylation of Jak2 by PTP-PEST, thereby interfering with lactogenic hormone PRL signaling (7). PTP-PEST dephosphorylates c-Abl as well, which affects the phosphorylation states of PTP-PEST substrates such as paxillin, p130 Cas, Crk, and PSTPIP1 (8).PTP-PEST regulates adhesion and motility of cultured epithelial cells through modulation of Rho GTPase activity (9), and is required for integrin-mediated endothelial cell adhesion and migration (10).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated HER2/ErbB2 (29D8) Rabbit mAb #2165.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: The ErbB2 (HER2) proto-oncogene encodes a 185 kDa transmembrane, receptor-like glycoprotein with intrinsic tyrosine kinase activity (1). While ErbB2 lacks an identified ligand, ErbB2 kinase activity can be activated in the absence of a ligand when overexpressed and through heteromeric associations with other ErbB family members (2). Amplification of the ErbB2 gene and overexpression of its product are detected in almost 40% of human breast cancers (3). Binding of the c-Cbl ubiquitin ligase to ErbB2 at Tyr1112 leads to ErbB2 poly-ubiquitination and enhances degradation of this kinase (4). ErbB2 is a key therapeutic target in the treatment of breast cancer and other carcinomas and targeting the regulation of ErbB2 degradation by the c-Cbl-regulated proteolytic pathway is one potential therapeutic strategy. Phosphorylation of the kinase domain residue Tyr877 of ErbB2 (homologous to Tyr416 of pp60c-Src) may be involved in regulating ErbB2 biological activity. The major autophosphorylation sites in ErbB2 are Tyr1248 and Tyr1221/1222; phosphorylation of these sites couples ErbB2 to the Ras-Raf-MAP kinase signal transduction pathway (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Nuclear Receptor Binding Factor-2 (NRBF-2), also referred to as Comodulator of PPAR and RXRα-2 (COPR-2), has been shown to interact with the AF-2 region of several nuclear hormone receptors with varying affinities such as PPARα, RARα, RARγ, and RXRα (1,2). NRBF-2 contains a LLYLL motif, which matches the LXXLL NR box consensus and is required for functional NRBF-2/nuclear receptor complex formation and repression of receptor function. NRBF-2 also contains a unique autonomous activation domain and, thus, does not completely abrogate nuclear receptor function, suggesting that NRBF-2 might serve as a molecular rheostat to fine-tune the transcriptional activity of liganded nuclear receptors (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Stargazin is a four-pass transmembrane protein related to VDCC (voltage dependent calcium channel) γ subunits and part of the TARP (transmembrane AMPA receptor regulatory protein) family of proteins. TARP proteins can form a complex with AMPA receptors (GluR1-4) and serve as integral auxiliary subunits (1-6).Interactions between stargazin and AMPA receptors are implicated in regulation of receptor surface expression, synaptic clustering and recycling, as well as increased receptor responsiveness to glutamate (1,2,5,6). Stargazin may play a role in the molecular mechanism of AMPAR-mediated inflammatory pain by taking part in signaling pathways that relay pain in the spinal cord (5). Because the protein also modulates the pharmacology of AMPA receptors, it enhances the effects of AMPAR potentiators that have therapeutic potential for a number of mental and neurodegenerative diseases (6).The carboxy terminus of the stargazin protein interacts with the PDZ domains of PSD95 and other membrane-associated guanylate kinase (MAGUK) family members, and together traffic AMPA receptors to the cell surface membrane, anchoring them to the postsynaptic site (1,7). Phosphorylation of stargazin by PKA on Thr321 inhibits this binding (3).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Cytochrome c (D18C7) Rabbit mAb #11940.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Cytochrome c is a well conserved electron-transport protein and is part of the respiratory chain localized to mitochondrial intermembrane space (1). Upon apoptotic stimulation, cytochrome c released from mitochondria associates with procaspase-9 (47 kDa)/Apaf 1. This complex processes caspase-9 from inactive proenzyme to its active form (2). This event further triggers caspase-3 activation and eventually leads to apoptosis (3).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Ki-67 (D3B5) Rabbit mAb #9129.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: Ki-67, named after the location where it was discovered (Kiel University, Germany), is a nuclear nonhistone protein (1) that is universally expressed among proliferating cells and absent in quiescent cells (2). Ki-67 detects proliferating cells in G1, S, G2, and mitosis, but not in the G0 resting phase. Research studies have shown that high levels of Ki-67 are associated with poorer breast cancer survival (3). Research studies have explored the use of Ki-67, along with other markers, as potential prognostic or predictive markers in breast cancer and other malignant diseases (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Non-T cell activation linker (NTAL)/linker for activation of B cells (LAB) is a small transmembrane adaptor protein associated with glycolipid-enriched membrane fractions (1,2). NTAL/LAB is also known as LAT2 (linker for activation of T cells 2), WBSCR5, WBS15, and WBSCR15 (Williams-Beuren syndrome chromosome region 15 protein). It is expressed in B cells, monocytes, mast cells, and natural killer cells, but not in resting T cells (3). Upon activation of several receptors, NTAL/LAB becomes tyrosine-phosphorylated and recruits signaling molecules such as GRB2 and c-Cbl into receptor signaling complexes (4-6).

$262
3 nmol
300 µl
SignalSilence® SirT1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit SirT1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: The Silent Information Regulator (SIR2) family of genes is a highly conserved group of genes that encode nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases, also known as class III histone deacetylases. The first discovered and best characterized of these genes is Saccharomyces cerevisiae SIR2, which is involved in silencing of mating type loci, telomere maintenance, DNA damage response, and cell aging (1). SirT1, the mammalian ortholog of Sir2, is a nuclear protein implicated in the regulation of many cellular processes, including apoptosis, cellular senescence, endocrine signaling, glucose homeostasis, aging, and longevity. Targets of SirT1 include acetylated p53 (2,3), p300 (4), Ku70 (5), forkhead (FoxO) transcription factors (5,6), PPARγ (7), and the PPARγ coactivator-1α (PGC-1α) protein (8). Deacetylation of p53 and FoxO transcription factors represses apoptosis and increases cell survival (2,3,5,6). Deacetylation of PPARγ and PGC-1α regulates the gluconeogenic/glycolytic pathways in the liver and fat mobilization in white adipocytes in response to fasting (7,8). SirT1 deacetylase activity is inhibited by nicotinamide and activated by resveratrol. In addition, SirT1 activity may be regulated by phosphorylation, as it is phosphorylated at Ser27 and Ser47 in vivo; however, the function of these phosphorylation sites has not yet been determined (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: TMP21, a type I transmembrane protein, is a member of the p24 cargo protein family, which is highly enriched in the ER, the Golgi and coat protein (COP) I and II transport vesicles (1,2). TMP21 is involved in protein transport and vesicular targeting. In particular, TMP21 influences APP trafficking by stabilizing nascent APP. The absence of TMP21 leads to enhanced maturation and cell surface accumulation of APP (3). In addition, TMP21 is a non-essential component of the γ-secretase complex with the potential to modulate γ-secretase mediated cleavage and Aβ production without having an effect on ε-secretase activity (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Rab10 is a member of the Ras superfamily of small Rab GTPases (1) that interacts with Mss4, myosin V (Va, Vb and Vc) and GDI as it helps mediate sorting among cellular endosomes (2-4). Mutation analysis and GFP-fusion protein expression of Rab10 in MDCK cells determined that Rab10 plays a regulatory role in membrane protein transport between early endosomes and basolateral compartments (5,6). Rab10 associates with the GLUT4 complex as a target for AS160 and is required for insulin-stimulated GLUT4 translocation in adipocytes (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Western Blotting

Background: Synaptotagmin 1 (SYT1) is an integral membrane protein found in synaptic vesicles thought to play a role in vesicle trafficking and exocytosis (1). Individual SYT1 proteins are composed of an amino-terminal transmembrane region, a central linker region and a pair of carboxy-terminal C2 domains responsible for binding Ca2+ (2). The C2 domains appear to be functionally distinct, with the C2A domain responsible for regulating synaptic vesicle fusion in a calcium-dependent manner during exocytosis while the C2B domain allows for interaction between adjacent SYT1 proteins (3). Because synaptotagmin 1 binds calcium and is found in synaptic vesicles, this integral membrane protein is thought to act as a calcium sensor in fast synaptic vesicle exocytosis. Evidence suggests possible roles in vesicle-mediated endocytosis and glucose-induced insulin secretion as well (4,5). SYT1 binds several different SNARE proteins during calcium-mediated vesicle endocytosis and an association between SYT1 and the SNARE protein SNAP-25 is thought to be a key element in vesicle-mediated exocytosis (6).

$262
3 nmol
300 µl
SignalSilence® NF-κB p65 siRNA I (Mouse Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit NF-κB p65 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Fatty acid binding proteins (FABPs) bind to fatty acids and other lipids to function as cytoplasmic lipid chaperones (1). They participate in the transport of fatty acids and other lipids to various cellular pathways (2). Differential expression of FABPs is found in several types of tumors and their normal-cell counterparts (3). FABP7 is abundantly expressed in fetal brain and may be essential for development (4). Expression is required for the establishment of the radial glial fiber system, a system that is necessary for the development of cortical layers (5). Increased expression of FABP7 is associated with reduced survival in patients with glioblastoma (6), and is also found in glial cells following nerve injury (7). Investigators have found loss of FABP7 may be involved in the development and progression of breast cancer and expression of FABP7 has been shown to induce mammary differentiation and to inhibit growth of breast cancer cells (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Receptor binding cancer antigen expressed on SiSo cells (RCAS1) is also known as estrogen receptor-binding fragment-associated gene 9 (EBAG9). Originally identified as an estrogen-inducible gene (1), RCAS1 was recently found to play a novel role in the adaptive immune response by negatively regulating the cytolytic activity of cytotoxic T lymphocytes (CTLs) (2). RCAS1 is conserved in phylogeny and is ubiquitously expressed in most human tissues and cells (3,4). There is evidence that tissue expression of RCAS1 is increased in a variety of malignancies, including cancers of the gastrointestinal tract, liver, lung, breast, ovary, endometrium, and cervix. Research studies have shown that levels of RCAS1 tissue expression are negatively correlated with the prognosis of patients harboring the aforementioned malignancies (4). It is also noteworthy that research studies have detected elevated levels of RCAS1 in the sera of cancer patients (4). Initial studies indicated that RCAS1 was secreted from cancer cells and functioned as a ligand for a putative receptor expressed on NK cells, as well as T and B lymphocytes, inducing their apoptosis, which enabled cancer cells to evade immune surveillance (5,6). Subsequent studies have identified RCAS1 as a type III transmembrane Golgi protein with the ability to regulate vesicle formation, secretion, and protein glycosylation (2,7-9). Indeed, it has been shown that RCAS1 overexpression negatively regulates the cytolytic function of CTLs by negatively regulating protein trafficking from the trans-Golgi to secretory lysosomes (2). Furthermore, RCAS1 overexpression delays vesicle transport from the ER to Golgi and causes components of the ER quality control and glycosylation machinery to mislocalize. As a consequence, RCAS1 induces the deposition of tumor-associated glycan antigens on the cell surface, which are thought to contribute to tumor pathogenesis through the mediation of adhesion, invasion, and metastasis (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The Ras family small GTPase Ran is involved in nuclear envelope formation, assembly of the mitotic spindle, and nuclear transport (1,2). Like other small GTPases, Ran is active in its GTP-bound form and inactive in its GDP-bound form. Nuclear RanGTP concentration is maintained through nuclear localization of guanine nucleotide exchange factor (GEF) activity, which catalyzes the exchange of bound GDP for GTP. Regulator of chromatin condensation 1 (RCC1) is the only known RanGEF (3). RCC1 is dynamically chromatin-bound throughout the cell cycle, and this localization is required for mitosis to proceed normally (4,5). Appropriate association of RCC1 with chromatin is regulated through amino-terminal phosphorylation (5,6) and methylation (7). RCC1 regulation of RanGTP levels in response to histone modifications regulates nuclear import during apoptosis (8). In mitosis RCC1 is phosphorylated at Ser11, possibly by cyclin B/cdc2 (9-11). This phosphorylation may play a role in RCC1 interaction with chromatin and RCC1 RanGEF activity (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: PAR-4 (prostate apoptosis response-4) was identified as a protein that is upregulated in prostate tumor cells undergoing apoptosis (1). Additionally, in parallel studies PAR-4 was found in the yeast two-hybrid system to bind to the Wilms' tumor suppressor protein WT1 and may modulate WT1-medated transcriptional activation (2). PAR-4 contains a leucine zipper domain and a death domain and has been implicated as an effector of apoptosis during tumorigenesis as well as in neurodegenerative disorders (3,4). PAR-4 is widely expressed in normal tissues but can be downregulated in some tumor types. The mechanism of PAR-4 mediated apoptosis regulation appears to be complex and dependent on the cellular context. Studies have indicated roles for PAR-4 in activation of the Fas-FADD-caspase-8 pathway as well as inhibition of the NF-κB pro-survival pathway (5-7). Its activity is likely to depend on the cellular context and post-translational modifications. For instance, phosphorylation of PAR-4 by Akt prevents its nuclear translocation thereby promoting cell surivival (8). In contrast, phoshorylation of rat PAR-4 at T155 by PKA appears to positively regulate its apoptotic activity (9).