20% off purchase of 3 or more products* | Learn More >>

Product listing: FBXL10 (D3T8J) Rabbit mAb, UniProt ID Q8NHM5 #44570 to S6 Ribosomal Protein (54D2) Mouse mAb (HRP Conjugate), UniProt ID P62753 #14662

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: F-box and leucine-rich repeat protein 10 (FBXL10), also known as lysine-specific demethylase 2B (KDM2B) and JmjC domain-containing histone demethylation protein 1B (JHDM1B), is a lysine-specific histone demethylase protein that demethylates Lys4 and Lys36 of histone H3 (1,2). FBXL10 contains a zinc finger-CxxC5 DNA binding domain that binds to un-methylated CpG dinucleotides and has been shown to function as part of a non-canonical polycomb repressor complex (PRC1) that is associated with repression of developmentally regulated genes (3-5). In embryonic stem cells, FBXL10 is critical for targeting PRC1 to CpG islands and regulating gene expression during differentiation. In addition, FBXL10 is over-expressed in various cancers where it functions to induce cell proliferation and repress senescence through repression of the p15Ink4b gene locus (6-8). High expression of FBXL10 in pancreatic ductal adenocarcinoma is associated with metastasis, while high expression in acute myeloid leukemia is associated with increased proliferation and self-renewal of leukemic stem cells (6-8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: ATP-dependent chromatin remodeling complexes play an essential role in the regulation of nuclear processes such as transcription and DNA replication and repair (1,2). The SWI/SNF chromatin remodeling complex consists of more than 10 subunits and contains a single molecule of either BRM or BRG1 as the ATPase catalytic subunit. The activity of the ATPase subunit disrupts histone-DNA contacts and changes the accessibility of crucial regulatory elements to the chromatin. The additional core and accessory subunits play a scaffolding role to maintain stability and provide surfaces for interaction with various transcription factors and chromatin (2-5). The interactions between SWI/SNF subunits and transcription factors, such as nuclear receptors, p53, Rb, BRCA1, and MyoD, facilitate recruitment of the complex to target genes for regulation of gene activation, cell growth, cell cycle, and differentiation processes (1,6-9).

$489
96 assays
1 Kit
CST's PathScan® Phospho-ALK (Tyr1604) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of phospho-ALK (Tyr1604) or phospho-NPM-ALK fusion protein. A Phospho-ALK (Tyr1604) Antibody has been coated onto the microwells. After incubation with cell lysates, only phospho-ALK or phospho-NPM-ALK proteins are captured by the coated antibody. Following extensive washing, an ALK Mouse mAb is added to detect the captured phospho-ALK or phospho-NPM-ALK fusion protein. Anti-mouse IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of absorbance for this developed color is proportional to the quantity of phospho-ALK (Tyr1604) or phospho-NPM-ALK proteins.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor for pleiotrophin (PTN), a growth factor involved in embryonic brain development (1-3). In ALK-expressing cells, PTN induces phosphorylation of both ALK and the downstream effectors IRS-1, Shc, PLCγ, and PI3 kinase (1). ALK was originally discovered as a nucleophosmin (NPM)-ALK fusion protein produced by a translocation (4). Investigators have found that the NPM-ALK fusion protein is a constitutively active, oncogenic tyrosine kinase associated with anaplastic lymphoma (4). Research literature suggests that activation of PLCγ by NPM-ALK may be a crucial step for its mitogenic activity and involved in the pathogenesis of anaplastic lymphomas (5).A distinct ALK oncogenic fusion protein involving ALK and echinoderm microtubule-associated protein like 4 (EML4) has been described in the research literature from a non-small cell lung cancer (NSCLC) cell line, with corresponding fusion transcripts present in some cases of lung adenocarcinoma. The short, amino-terminal region of the microtubule-associated protein EML4 is fused to the kinase domain of ALK (6-8).

$489
96 assays
1 Kit
CST's PathScan® Total ALK Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of total ALK and NPM-ALK fusion protein. An ALK rabbit capture antibody has been coated onto the microwells. After incubation with cell lysates, ALK and NPM-ALK proteins (phospho and nonphospho) are captured by the coated antibody. Following extensive washing, an ALK mouse detection antibody is added to detect the captured ALK and NPM-ALK proteins. Anti-mouse IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of absorbance for this developed color is proportional to the quantity of total ALK and NPM-ALK proteins.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor for pleiotrophin (PTN), a growth factor involved in embryonic brain development (1-3). In ALK-expressing cells, PTN induces phosphorylation of both ALK and the downstream effectors IRS-1, Shc, PLCγ, and PI3 kinase (1). ALK was originally discovered as a nucleophosmin (NPM)-ALK fusion protein produced by a translocation (4). Investigators have found that the NPM-ALK fusion protein is a constitutively active, oncogenic tyrosine kinase associated with anaplastic lymphoma (4). Research literature suggests that activation of PLCγ by NPM-ALK may be a crucial step for its mitogenic activity and involved in the pathogenesis of anaplastic lymphomas (5).A distinct ALK oncogenic fusion protein involving ALK and echinoderm microtubule-associated protein like 4 (EML4) has been described in the research literature from a non-small cell lung cancer (NSCLC) cell line, with corresponding fusion transcripts present in some cases of lung adenocarcinoma. The short, amino-terminal region of the microtubule-associated protein EML4 is fused to the kinase domain of ALK (6-8).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric analysis of human cells. The unconjugated antibody #2966 reacts with human, mouse, rat and hamster Akt protein. CST expects that Akt (5G3) Mouse mAb (Alexa Fluor® 647 Conjugate) will also recognize Akt in these species.
APPLICATIONS
REACTIVITY
Hamster, Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3 kinase/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: Immunity-related GTPase family M protein 1 (IRGM, LRG-47) belongs to the p47 family of immunity related guanosine triphosphatases (IRGs) that regulate innate immune responses to intracellular pathogens (1-3). Research studies indicate that IRGM plays a role in autophagy during clearance of intracellular bacteria (4). Expression of IRGM in mice, but not in humans, is induced by inflammatory signals that include interferon and LPS (2,3). Polymorphisms in the corresponding IRGM gene are associated with some cases of tuberculosis (5-7), Crohn’s disease (8,9), and severe sepsis (10). Additional studies indicate that IRGM functions through regulation of autophagy (4). Mitochondrial IRGM plays a role in mitochondrial fission, membrane polarization, and mitophagy (11). Knockout mice for IRGM show increased susceptibility to infection as well as intestinal inflammation and Paneth cell abnormalities (12,13). Knockout mice against IRGM are also resistant to neuronal autophagy following stroke (14). RNA viruses commonly target IRGM in order to suppress autophagy and enhance infection (15).

The Human T Cell Co-inhibitory and Co-stimulatory Receptor IHC Antibody Sampler Kit provides an economical means of detecting expression of receptors that modulate T cell activity in formalin-fixed, paraffin-embedded tissue samples.
$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: CD105/Endoglin is an auxiliary receptor for the TGF-β receptor complex, functioning in related signaling pathways (1,2). CD105/Endoglin is a transmembrane protein that exists as a disulfide-linked homodimer. It is mainly expressed in vascular and connective tissues and in endothelial and stromal cells. Upregulated CD105/endoglin expression has been reported during wound healing and tumor vascularization, and in inflammatory tissues and developing embryos (1-4). Mutations inCD105/endoglin have been found to be a causal factor of hereditary hemorrhagic telangiectasia (HHT), a disease characterized by malformation of vascular structure (5,6). The importance of this protein for normal and tumor vascular function makes it a good marker for endothelial cell proliferation as well as a potential therapeutic target in cancer (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The polycomb group (PcG) of proteins contributes to the maintenance of cell identity, stem cell self-renewal, cell cycle regulation, and oncogenesis by maintaining the silenced state of genes that promote cell lineage specification, cell death, and cell-cycle arrest (1-4). PcG proteins exist in two complexes that cooperate to maintain long-term gene silencing through epigenetic chromatin modifications. The first complex, EED-EZH2, is recruited to genes by DNA-binding transcription factors and methylates histone H3 on Lys27. This histone methyl-transferase activity requires the Ezh2, Eed, and Suz12 subunits of the complex (5). Histone H3 methylation at Lys27 facilitates the recruitment of the second complex, PRC1, which ubiquitinylates histone H2A on Lys119 (6). Bmi1 is a component of the PRC1 complex, which together with Ring1 strongly enhances the E3 ubiquitin ligase activity of the Ring2 catalytic subunit (7). Bmi1 plays an important role in the regulation of cell proliferation and senescence through repression of the p16 INK4A and p19 ARF genes and is required for maintenance of adult hematopoietic and neural stem cells (3,4,8-10).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated β2-microglobulin (D8P1H) Rabbit mAb #12851.
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry

Background: β2-microglobulin (B2M) is a principal component of the Major Histocompatibility Complex (MHC) class I molecule, a ternary membrane protein complex that displays fragments derived from proteolyzed cytosolic proteins on the surface of cells for recognition by the surveillance immune system (1,2). As an integral component of the MHC class I complex, β2-microglobulin plays a critically important role in immune system function (3). It has important relevance to cancer biology research; for example, research studies have shown that nearly one-third of diffuse large B cell lymphomas contain mutations that inactivate β2-microglobulin gene function, thereby allowing tumor cells to escape immune detection (4). In addition, β2-microglobulin has been identified as an amyloid preprotein with collagen-binding affinity (5); its accumulation in osteoarthritic lesions of long-term dialysis patients is reportedly a contributing factor to the condition known as amyloid osteoarthropathy (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Tripartite motif containing protein 27 (TRIM27, RFP) is a member of the tripartite motif (TRIM) family whose members contain a RING domain, a B-box, and a coiled-coil region (together called RBCC). TRIM27 was originally discovered as part of an oncogenic DNA rearrangement resulting in a fusion of the amino terminal RBCC region of TRIM27 with the carboxyl terminal kinase domain of the receptor tyrosine kinase Ret (1). Overexpression of TRIM27 induces JNK and p38 MAPK activation as well as apoptosis (2). TRIM27 has been found to have pleiotropic effects including transcriptional repression (3,4), and E3 ligase activity for ubiquitin (5-7), and SUMO (8). TRIM27 was originally found to interact with Enhancer of Polycomb (EPC) and function as a transcriptional repressor (3). Subsequent studies have identified ubiquitin E3 ligase activity in TRIM27 as well as other members of the TRIM family (reviewed in 9). Potential substrates of TRIM27-mediated ubiquitination include class II PI3K-C2β, NOD2, and WASH. Elevated expression of TRIM27 has been observed in several types of cancer, where in some cases it may be a predictor of poor prognosis (10-13).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated MUC1 (D9O8K) XP® Rabbit mAb #14161.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Mucins represent a family of glycoproteins characterized by repeat domains and dense O-glycosylation (1). MUC1 (or mucin 1) is aberrantly overexpressed in most human carcinomas. Increased expression of MUC1 in carcinomas reduces cell-cell and cell-ECM interactions. MUC1 is cleaved proteolytically, and the large ectodomain can remain associated with the small 25 kDa carboxy-terminal domain that contains a transmembrane segment and a 72-residue cytoplasmic tail (1). MUC1 interacts with ErbB family receptors and potentiates ERK1/2 activation (2). MUC1 also interacts with β-catenin, which is regulated by GSK-3β, PKCγ, and Src through phosphorylation at Ser44, Thr41, and Tyr46 of the MUC1 cytoplasmic tail (3-5). Overexpression of MUC1 potentiates transformation (6) and attenuates stress-induced apoptosis through the Akt or p53 pathways (7,8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Modulation of chromatin structure has a critical role in the control of various DNA directed activities such as transcription, DNA replication, and repair (1). The basic unit of chromatin, the nucleosome, consists of two turns of DNA wrapped around two copies each of four core histone proteins (H2A, H2B, H3, and H4) (2,3). Amino-terminal tails of histones undergo various post-translational modifications such as acetylation, methylation, phosphorylation, and ubiquitination in response to physiological and environmental stimuli. These modifications modulate the accessibility of chromatin to effector proteins as well as act as binding sites for specific histone modification recognizing effector proteins that regulate gene expression (1,4,5). Such alterations in chromatin modifications and architecture that accompany gene expression changes have been observed during embryonic stem cell differentiation (6). One of the ways in which chromatin modifications may be altered in stem cells involves regulated proteolysis of histone H3 by Cathepsin L. Cathepsin L cleaves the histone H3 amino-terminal tail predominantly at Thr22 in differentiating stem cells, leading to removal of histone modification marks which could then influence the expression patterns of developmentally regulated genes (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Kv4.2 is a voltage-gated potassium channel that belongs to the Shal-related subfamily. Kv4.2 mediates K+ transport in excitable membranes primarily in the brain, where it regulates neuronal excitability, synaptic plasticity, and the circadian rhythm of locomotor activity (1-6). In rodent heart, Kv4.2 mediates the transient outward current (Ito), which contributes to early repolarization and the cardiac action potential (7). Kv4.2 can form homotetramers or heterotetramers with other members of the Shal-related subfamily. Interaction with modulating β subunits such as KChIP family proteins modulates Kv4.2 expression at cell surface and its channel activity (8-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Sphingomyelinases (SMases) catalyze the hydrolysis of sphingomyelin to produce ceramide and phosphocholine (1). Ceramide is an important bioactive lipid triggering signal transduction involved in cell proliferation, apoptosis and differentiation (1,2). A number of SMases have been described and categorized based on their optimum pH activity, cation dependence, tissue distribution, and subcellular localization (1). These include a lysosomal acid SMase, a Zn++-dependent secreted acid SMase, a membrane-bound Mg++-dependent neutral SMase, a Mg++-independent neutral SMase, and an alkaline SMase.

$336
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: Striatal enriched phosphatase (STEP, also known as PTPN5), is a protein tyrosine phosphatase expressed in dopaminoceptive neurons of the central nervous system (1). Alternative splicing produces the cytosolic STEP46 and the membrane-associated STEP61 isoforms of STEP. Dopamine activates D1 receptors and PKA, which in turn phosphorylate both isoforms of STEP. Phosphorylation of STEP61 occurs at Ser160 and Ser221, while STEP46 is phosphorylated at Ser49 (equivalent to Ser221 of STEP61) (2). NMDA-mediated activation of STEP is an important mechanism for regulation of Erk activity in neurons (3). Furthermore, STEP is involved in the regulation of both NMDAR and AMPAR trafficking (4,5). Due to its importance in cognitive function, STEP may play a role in Alzheimer's disease (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Myelin proteolipid protein (PLP1) corresponds to the majority of myelin proteins in the CNS, providing support to axons and modulating the axonal growth (1). DM20 is the result of the alternative splicing of the plp1 gene, which is linked to oligodendrocyte differentiation and survival. The imbalance of PLP1/DM20, is linked to Pelizaeus-Merzbacher disese (2,3), including mitochonmdrial damage (4). In addition, PLP1, but not DM20, can enter the mitochondria and participate in the metabolism of cells (5, 6).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Tri-Methyl-Histone H3 (Lys36) (D5A7) XP® Rabbit mAb #4909.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$364
400 µl
This Cell Signaling Technology antibody is immobilized by the covalent reaction of hydrazinonicotinamide-modifed antibody with formylbenzamide-modified magnetic bead. Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb (Magnetic Bead Conjugate) is useful for immunoprecipitation of phosphorylated Erk protein.
APPLICATIONS
REACTIVITY
Bovine, D. melanogaster, Dog, Hamster, Human, Mink, Monkey, Mouse, Pig, Rat, S. cerevisiae, Zebrafish

Application Methods: Immunoprecipitation

Background: Mitogen-activated protein kinases (MAPKs) are a widely conserved family of serine/threonine protein kinases involved in many cellular programs, such as cell proliferation, differentiation, motility, and death. The p44/42 MAPK (Erk1/2) signaling pathway can be activated in response to a diverse range of extracellular stimuli including mitogens, growth factors, and cytokines (1-3), and research investigators consider it an important target in the diagnosis and treatment of cancer (4). Upon stimulation, a sequential three-part protein kinase cascade is initiated, consisting of a MAP kinase kinase kinase (MAPKKK or MAP3K), a MAP kinase kinase (MAPKK or MAP2K), and a MAP kinase (MAPK). Multiple p44/42 MAP3Ks have been identified, including members of the Raf family, as well as Mos and Tpl2/COT. MEK1 and MEK2 are the primary MAPKKs in this pathway (5,6). MEK1 and MEK2 activate p44 and p42 through phosphorylation of activation loop residues Thr202/Tyr204 and Thr185/Tyr187, respectively. Several downstream targets of p44/42 have been identified, including p90RSK (7) and the transcription factor Elk-1 (8,9). p44/42 are negatively regulated by a family of dual-specificity (Thr/Tyr) MAPK phosphatases, known as DUSPs or MKPs (10), along with MEK inhibitors, such as U0126 and PD98059.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Activation-induced cytidine deaminase (AID) is thought to modify RNA due to its high homology to the RNA editing enzyme APOBEC-1. This function, however, has not been confirmed in in vitro studies, which show that AID has significant cytidine deaminase activity, and that this activity is blocked by zinc chelation (1).The B cell immune system must specifically recognize several infectious agents, which vastly outnumber immunoglobulin gene segments present in a given organism. Mechanisms such as somatic hypermutation, isotype switch recombination and gene conversion introduce diversity and specificity to the immune system. Analysis of mouse models and patients with AID deficiency has established a link between all three of these mechanisms and AID function (2). AID protein is detected in germinal center centroblast and germinal center derived lymphomas (Burkitt lymphoma), but not in pre-germinal center B cells or post-germinal center neoplasms (B cell chronic lymphocytic leukemia and multiple myeloma) (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Small GTPases act as molecular switches, regulating processes such as cell migration, adhesion, proliferation and differentiation. They are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of bound GDP for GTP, and inhibited by GTPase activating proteins (GAPs), which catalyze the hydrolysis of GTP to GDP. RASAL2 was initially identified as a GAP for the small GTPase, Ras, and later shown to interact with the Rho-GEF ECT2, and to regulate Rho activity in human astrocytoma cells (1).Researchers have implicated RASAL2 as a suppressor of migration and metastasis in human cancer (2), and have shown that RASAL2 downregulation promotes epithelial-mesenchymal transition and metastasis in ovarian cancer (3) and lung cancer (4). Conversely, other research studies show that RASAL2 can be oncogenic in triple negative breast cancer through activation of Rac1 signaling (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Filamins are a family of dimeric actin binding proteins that function as structural components of cell adhesion sites. They also serve as a scaffold for subcellular targeting of signaling molecules (1). The actin binding domain (α-actinin domain) located at the amino terminus is followed by as many as 24 tandem repeats of about 96 residues and the dimerization domain is located at the carboxy terminus. In addition to actin filaments, filamins associate with other structural and signaling molecules such as β-integrins, Rho/Rac/Cdc42, PKC and the insulin receptor, primarily through the carboxy-terminal dimerization domain (1-3). Filamin A, the most abundant, and filamin B are widely expressed isoforms, while filamin C is predominantly expressed in muscle (1). Filamin A is phosphorylated by PAK1 at Ser2152, which is required for PAK1-mediated actin cytoskeleton reorganization (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The methylation state of lysine residues in histone proteins is a major determinant of the formation of active and inactive regions of the genome and is crucial for proper programming of the genome during development (1,2). Jumonji C (JmjC) domain-containing proteins represent the largest class of potential histone demethylase proteins (3). The JmjC domain can catalyze the demethylation of mono-, di-, and tri-methyl lysine residues via an oxidative reaction that requires iron and α-ketoglutarate (3). Based on homology, both humans and mice contain at least 30 such proteins, which can be divided into 7 separate families (3). The jumonji domain-containing protein 2 (JMJD2) family, also known as the JmjC domain-containing histone demethylation protein 3 (JHDM3) family, contains four members: JMJD2A/JHDM3A, JMJD2B/JHDM3B, JMJD2C/JHDM3C, and JMJD2D/JHDM3D. In addition to the JmjC domain, these proteins also contain JmjN, PHD, and tudor domains, the latter of which has been shown to bind to methylated histone H3 at Lys4 and Lys9, and methylated histone H4 at Lys20 (4,5). JMJD2 proteins have been shown to demethylate di- and tri-methyl histone H3 at Lys9 and Lys36 and function as both activators and repressors of transcription (6-11). JMJD2A, JMJD2C, and JMJD2D function as coactivators of the androgen receptor in prostate tumor cells (7). In contrast, JMJD2A also associates with Rb and NCoR corepressor complexes and is necessary for transcriptional repression of target genes (8,9). JMJD2B antagonizes histone H3 Lys9 tri-methylation at pericentric heterochromatin (10). JMJD2C, also known as GASC1, is amplified in squamous cell carcinomas and metastatic lung carcinoma and inhibition of JMJD2C expression decreases cell proliferation (11,12). JMJD2C has also been identified as a downstream target of Oct-4 and is critical for the regulation of self-renewal in embryonic stem cells (13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism, and transport of nuclear pre-mRNA transcripts (1). hnRNP A1 regulates the alternative splicing of c-Src and c-H-Ras (2,3) and modifies initiation of translation of the fibroblast growth factor 2 mRNA (4). hnRNP A1 expression level is elevated in many cancers; knockdown of hnRNP A1 leads to apoptosis in various cancer cells (5). Although predominantly nuclear, hnRNP A1 is continually transported from the nucleus to the cytoplasm where it disassociates from mRNA and is rapidly re-imported into the nucleus (6,7). hnRNP A1 binds to cis-acting repressive sequences (CRS) of HIV-1 to influence HIV-1 production (8,9). HIV-1 enhances hnRNP A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: TRIM5α is a retroviral restriction factor that was originally identified as an HIV restriction factor in Old World monkeys (1). The restriction specificity of TRIM5α varies between species (2). Human TRIM5α only weakly restricts HIV, but efficiently restricts N-tropic murine leukemia virus (N-MLV) (1-3). TRIM5α is composed of a tripartite motif containing RING, B-box 2, and coiled-coil domains, and a B30.2/SPRY domain (4). A 13 amino acid stretch of the B30.2/SPRY domain containing multiple positively charged residues was found to be essential for viral restriction and responsible for variations across species in restriction specificity (4,5). TRIM5α blocks viral infection by interacting with the incoming viral capsid and promoting its premature disassembly (1,6,7). In addition, TRIM5α, together with UBC13-UEV1A, promotes innate immune signaling by catalyzing the synthesis of K63-linked ubiquitin chains that activate TAK1, AP-1, and NF-κB (8).

$489
96 assays
1 Kit
The PathScan® Phospho-Histone H2A.X (Ser139) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of Histone H2A.X protein phosphorylated at Ser139. A Histone H2A.X rabbit antibody has been coated onto the microwells. After incubation with cell lysates, both phospho- and non-phospho-Histone H2A.X proteins are captured by the coated antibody. Following extensive washing, a phospho-Histone H2A.X (Ser139) mouse antibody is added to detect the captured phospho-Histone H2A.X protein. Anti-mouse IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of Histone H2A.X phosphorylated at Ser139. Antibodies in this kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Histone H2A.X is a variant histone that represents approximately 10% of the total H2A histone proteins in normal human fibroblasts (1). H2A.X is required for checkpoint-mediated cell cycle arrest and DNA repair following double-stranded DNA breaks (1). DNA damage, caused by ionizing radiation, UV-light, or radiomimetic agents, results in rapid phosphorylation of H2A.X at Ser139 by PI3K-like kinases, including ATM, ATR, and DNA-PK (2,3). Within minutes following DNA damage, H2A.X is phosphorylated at Ser139 at sites of DNA damage (4). This very early event in the DNA-damage response is required for recruitment of a multitude of DNA-damage response proteins, including MDC1, NBS1, RAD50, MRE11, 53BP1, and BRCA1 (1). In addition to its role in DNA-damage repair, H2A.X is required for DNA fragmentation during apoptosis and is phosphorylated by various kinases in response to apoptotic signals. H2A.X is phosphorylated at Ser139 by DNA-PK in response to cell death receptor activation, c-Jun N-terminal Kinase (JNK1) in response to UV-A irradiation, and p38 MAPK in response to serum starvation (5-8). H2A.X is constitutively phosphorylated on Tyr142 in undamaged cells by WSTF (Williams-Beuren syndrome transcription factor) (9,10). Upon DNA damage, and concurrent with phosphorylation of Ser139, Tyr142 is dephosphorylated at sites of DNA damage by recruited EYA1 and EYA3 phosphatases (9). While phosphorylation at Ser139 facilitates the recruitment of DNA repair proteins and apoptotic proteins to sites of DNA damage, phosphorylation at Tyr142 appears to determine which set of proteins are recruited. Phosphorylation of H2A.X at Tyr142 inhibits the recruitment of DNA repair proteins and promotes binding of pro-apoptotic factors such as JNK1 (9). Mouse embryonic fibroblasts expressing only mutant H2A.X Y142F, which favors recruitment of DNA repair proteins over apoptotic proteins, show a reduced apoptotic response to ionizing radiation (9). Thus, it appears that the balance of H2A.X Tyr142 phosphorylation and dephosphorylation provides a switch mechanism to determine cell fate after DNA damage.

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated PDGF Receptor α (D13C6) XP® Rabbit mAb #5241.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Platelet derived growth factor (PDGF) family proteins exist as several disulphide-bonded, dimeric isoforms (PDGF AA, PDGF AB, PDGF BB, PDGF CC, and PDGF DD) that bind in a specific pattern to two closely related receptor tyrosine kinases, PDGF receptor α (PDGFRα) and PDGF receptor β (PDGFRβ). PDGFRα and PDGFRβ share 75% to 85% sequence homology between their two intracellular kinase domains, while the kinase insert and carboxy-terminal tail regions display a lower level (27% to 28%) of homology (1). PDGFRα homodimers bind all PDGF isoforms except those containing PDGF D. PDGFRβ homodimers bind PDGF BB and DD isoforms, as well as the PDGF AB heterodimer. The heteromeric PDGF receptor α/β binds PDGF B, C, and D homodimers, as well as the PDGF AB heterodimer (2). PDGFRα and PDGFRβ can each form heterodimers with EGFR, which is also activated by PDGF (3). Various cells differ in the total number of receptors present and in the receptor subunit composition, which may account for responsive differences among cell types to PDGF binding (4). Ligand binding induces receptor dimerization and autophosphorylation, followed by binding and activation of cytoplasmic SH2 domain-containing signal transduction molecules, such as GRB2, Src, GAP, PI3 kinase, PLCγ, and NCK. A number of different signaling pathways are initiated by activated PDGF receptors and lead to control of cell growth, actin reorganization, migration, and differentiation (5). Tyr751 in the kinase-insert region of PDGFRβ is the docking site for PI3 kinase (6). Phosphorylated pentapeptides derived from Tyr751 of PDGFRβ (pTyr751-Val-Pro-Met-Leu) inhibit the association of the carboxy-terminal SH2 domain of the p85 subunit of PI3 kinase with PDGFRβ (7). Tyr740 is also required for PDGFRβ-mediated PI3 kinase activation (8).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Cas9 (7A9-3A3) Mouse mAb #14697.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Western Blotting

Background: The CRISPR associated protein 9 (Cas9) is an RNA-guided DNA nuclease and part of the Streptococcus pyogenes CRISPR antiviral immunity system that provides adaptive immunity against extra chromosomal genetic material (1). The CRISPR antiviral mechanism of action involves three steps: (i), acquisition of foreign DNA by host bacterium; (ii), synthesis and maturation of CRISPR RNA (crRNA) followed by the formation of RNA-Cas nuclease protein complexes; and (iii), target interference through recognition of foreign DNA by the complex and its cleavage by Cas nuclease activity (2). The type II CRISPR/Cas antiviral immunity system provides a powerful tool for precise genome editing and has potential for specific gene regulation and therapeutic applications (3). The Cas9 protein and a guide RNA consisting of a fusion between a crRNA and a trans-activating crRNA (tracrRNA) must be introduced or expressed in a cell. A 20-nucleotide sequence at the 5' end of the guide RNA directs Cas9 to a specific DNA target site. As a result, Cas9 can be "programmed" to cut various DNA sites both in vitro and in cells and organisms. CRISPR/Cas9 genome editing tools have been used in many organisms, including mouse and human cells (4,5). Research studies demonstrate that CRISPR can be used to generate mutant alleles or reporter genes in rodents and primate embryonic stem cells (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The actin-binding protein girdin (CCDC88A, GIV) is a non-receptor guanine nucleotide exchange factor (GEF) and part of a scaffold that mediates key signaling pathways during cell migration (1). Girdin protein structure includes an amino-terminal Hook domain for microtubule interaction, a coiled-coil dimerization domain, a Gα binding domain, a PI(4)P-binding domain, and a carboxy-terminal receptor-binding domain within a GEF motif (1-5). Akt kinase phosphorylates girdin at Ser1416, which promotes PI(4)P binding, localization of girdin to the membrane leading edge, and regulation of actin organization and cell motility (3). After growth factor receptor activation, girdin binds both G-protein and receptor to form an activation complex at the receptor cytoplasmic tail. The activation complex enhances receptor autophosphorylation and promotes downstream signaling that results in actin organization and cell migration (5). An activated growth factor phosphorylates girdin at its carboxy-terminal Tyr1764 and Tyr1798 residues to form an SH2 docking site for PI3K binding (6). The girdin GEF motif interacts with Gα and leads to release of Gβγ, resulting in further PI3K activation and the completion of signal transduction from receptor to cytoskeleton (7). The cytoskeletal reorganization and cell migration properties of girdin are important in regulating several biological processes, including wound healing, angiogenesis, and cancer progression (8-11).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated S6 Ribosomal Protein (54D2) Mouse mAb #2317.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).